Step |
Hyp |
Ref |
Expression |
1 |
|
biidd |
|- ( ( T. /\ g = G ) -> ( ( Fun `' ( p |` ( 1 ..^ ( # ` f ) ) ) /\ ( ( p " { 0 , ( # ` f ) } ) i^i ( p " ( 1 ..^ ( # ` f ) ) ) ) = (/) ) <-> ( Fun `' ( p |` ( 1 ..^ ( # ` f ) ) ) /\ ( ( p " { 0 , ( # ` f ) } ) i^i ( p " ( 1 ..^ ( # ` f ) ) ) ) = (/) ) ) ) |
2 |
|
wksv |
|- { <. f , p >. | f ( Walks ` G ) p } e. _V |
3 |
|
trliswlk |
|- ( f ( Trails ` G ) p -> f ( Walks ` G ) p ) |
4 |
3
|
ssopab2i |
|- { <. f , p >. | f ( Trails ` G ) p } C_ { <. f , p >. | f ( Walks ` G ) p } |
5 |
2 4
|
ssexi |
|- { <. f , p >. | f ( Trails ` G ) p } e. _V |
6 |
5
|
a1i |
|- ( T. -> { <. f , p >. | f ( Trails ` G ) p } e. _V ) |
7 |
|
df-pths |
|- Paths = ( g e. _V |-> { <. f , p >. | ( f ( Trails ` g ) p /\ Fun `' ( p |` ( 1 ..^ ( # ` f ) ) ) /\ ( ( p " { 0 , ( # ` f ) } ) i^i ( p " ( 1 ..^ ( # ` f ) ) ) ) = (/) ) } ) |
8 |
|
3anass |
|- ( ( f ( Trails ` g ) p /\ Fun `' ( p |` ( 1 ..^ ( # ` f ) ) ) /\ ( ( p " { 0 , ( # ` f ) } ) i^i ( p " ( 1 ..^ ( # ` f ) ) ) ) = (/) ) <-> ( f ( Trails ` g ) p /\ ( Fun `' ( p |` ( 1 ..^ ( # ` f ) ) ) /\ ( ( p " { 0 , ( # ` f ) } ) i^i ( p " ( 1 ..^ ( # ` f ) ) ) ) = (/) ) ) ) |
9 |
8
|
opabbii |
|- { <. f , p >. | ( f ( Trails ` g ) p /\ Fun `' ( p |` ( 1 ..^ ( # ` f ) ) ) /\ ( ( p " { 0 , ( # ` f ) } ) i^i ( p " ( 1 ..^ ( # ` f ) ) ) ) = (/) ) } = { <. f , p >. | ( f ( Trails ` g ) p /\ ( Fun `' ( p |` ( 1 ..^ ( # ` f ) ) ) /\ ( ( p " { 0 , ( # ` f ) } ) i^i ( p " ( 1 ..^ ( # ` f ) ) ) ) = (/) ) ) } |
10 |
9
|
mpteq2i |
|- ( g e. _V |-> { <. f , p >. | ( f ( Trails ` g ) p /\ Fun `' ( p |` ( 1 ..^ ( # ` f ) ) ) /\ ( ( p " { 0 , ( # ` f ) } ) i^i ( p " ( 1 ..^ ( # ` f ) ) ) ) = (/) ) } ) = ( g e. _V |-> { <. f , p >. | ( f ( Trails ` g ) p /\ ( Fun `' ( p |` ( 1 ..^ ( # ` f ) ) ) /\ ( ( p " { 0 , ( # ` f ) } ) i^i ( p " ( 1 ..^ ( # ` f ) ) ) ) = (/) ) ) } ) |
11 |
7 10
|
eqtri |
|- Paths = ( g e. _V |-> { <. f , p >. | ( f ( Trails ` g ) p /\ ( Fun `' ( p |` ( 1 ..^ ( # ` f ) ) ) /\ ( ( p " { 0 , ( # ` f ) } ) i^i ( p " ( 1 ..^ ( # ` f ) ) ) ) = (/) ) ) } ) |
12 |
1 6 11
|
fvmptopab |
|- ( T. -> ( Paths ` G ) = { <. f , p >. | ( f ( Trails ` G ) p /\ ( Fun `' ( p |` ( 1 ..^ ( # ` f ) ) ) /\ ( ( p " { 0 , ( # ` f ) } ) i^i ( p " ( 1 ..^ ( # ` f ) ) ) ) = (/) ) ) } ) |
13 |
12
|
mptru |
|- ( Paths ` G ) = { <. f , p >. | ( f ( Trails ` G ) p /\ ( Fun `' ( p |` ( 1 ..^ ( # ` f ) ) ) /\ ( ( p " { 0 , ( # ` f ) } ) i^i ( p " ( 1 ..^ ( # ` f ) ) ) ) = (/) ) ) } |
14 |
|
3anass |
|- ( ( f ( Trails ` G ) p /\ Fun `' ( p |` ( 1 ..^ ( # ` f ) ) ) /\ ( ( p " { 0 , ( # ` f ) } ) i^i ( p " ( 1 ..^ ( # ` f ) ) ) ) = (/) ) <-> ( f ( Trails ` G ) p /\ ( Fun `' ( p |` ( 1 ..^ ( # ` f ) ) ) /\ ( ( p " { 0 , ( # ` f ) } ) i^i ( p " ( 1 ..^ ( # ` f ) ) ) ) = (/) ) ) ) |
15 |
14
|
bicomi |
|- ( ( f ( Trails ` G ) p /\ ( Fun `' ( p |` ( 1 ..^ ( # ` f ) ) ) /\ ( ( p " { 0 , ( # ` f ) } ) i^i ( p " ( 1 ..^ ( # ` f ) ) ) ) = (/) ) ) <-> ( f ( Trails ` G ) p /\ Fun `' ( p |` ( 1 ..^ ( # ` f ) ) ) /\ ( ( p " { 0 , ( # ` f ) } ) i^i ( p " ( 1 ..^ ( # ` f ) ) ) ) = (/) ) ) |
16 |
15
|
opabbii |
|- { <. f , p >. | ( f ( Trails ` G ) p /\ ( Fun `' ( p |` ( 1 ..^ ( # ` f ) ) ) /\ ( ( p " { 0 , ( # ` f ) } ) i^i ( p " ( 1 ..^ ( # ` f ) ) ) ) = (/) ) ) } = { <. f , p >. | ( f ( Trails ` G ) p /\ Fun `' ( p |` ( 1 ..^ ( # ` f ) ) ) /\ ( ( p " { 0 , ( # ` f ) } ) i^i ( p " ( 1 ..^ ( # ` f ) ) ) ) = (/) ) } |
17 |
13 16
|
eqtri |
|- ( Paths ` G ) = { <. f , p >. | ( f ( Trails ` G ) p /\ Fun `' ( p |` ( 1 ..^ ( # ` f ) ) ) /\ ( ( p " { 0 , ( # ` f ) } ) i^i ( p " ( 1 ..^ ( # ` f ) ) ) ) = (/) ) } |