Metamath Proof Explorer


Theorem pthsfval

Description: The set of paths (in an undirected graph). (Contributed by Alexander van der Vekens, 20-Oct-2017) (Revised by AV, 9-Jan-2021) (Revised by AV, 29-Oct-2021)

Ref Expression
Assertion pthsfval Paths G = f p | f Trails G p Fun p 1 ..^ f -1 p 0 f p 1 ..^ f =

Proof

Step Hyp Ref Expression
1 biidd g = G Fun p 1 ..^ f -1 p 0 f p 1 ..^ f = Fun p 1 ..^ f -1 p 0 f p 1 ..^ f =
2 wksv f p | f Walks G p V
3 trliswlk f Trails G p f Walks G p
4 3 ssopab2i f p | f Trails G p f p | f Walks G p
5 2 4 ssexi f p | f Trails G p V
6 5 a1i f p | f Trails G p V
7 df-pths Paths = g V f p | f Trails g p Fun p 1 ..^ f -1 p 0 f p 1 ..^ f =
8 3anass f Trails g p Fun p 1 ..^ f -1 p 0 f p 1 ..^ f = f Trails g p Fun p 1 ..^ f -1 p 0 f p 1 ..^ f =
9 8 opabbii f p | f Trails g p Fun p 1 ..^ f -1 p 0 f p 1 ..^ f = = f p | f Trails g p Fun p 1 ..^ f -1 p 0 f p 1 ..^ f =
10 9 mpteq2i g V f p | f Trails g p Fun p 1 ..^ f -1 p 0 f p 1 ..^ f = = g V f p | f Trails g p Fun p 1 ..^ f -1 p 0 f p 1 ..^ f =
11 7 10 eqtri Paths = g V f p | f Trails g p Fun p 1 ..^ f -1 p 0 f p 1 ..^ f =
12 1 6 11 fvmptopab Paths G = f p | f Trails G p Fun p 1 ..^ f -1 p 0 f p 1 ..^ f =
13 12 mptru Paths G = f p | f Trails G p Fun p 1 ..^ f -1 p 0 f p 1 ..^ f =
14 3anass f Trails G p Fun p 1 ..^ f -1 p 0 f p 1 ..^ f = f Trails G p Fun p 1 ..^ f -1 p 0 f p 1 ..^ f =
15 14 bicomi f Trails G p Fun p 1 ..^ f -1 p 0 f p 1 ..^ f = f Trails G p Fun p 1 ..^ f -1 p 0 f p 1 ..^ f =
16 15 opabbii f p | f Trails G p Fun p 1 ..^ f -1 p 0 f p 1 ..^ f = = f p | f Trails G p Fun p 1 ..^ f -1 p 0 f p 1 ..^ f =
17 13 16 eqtri Paths G = f p | f Trails G p Fun p 1 ..^ f -1 p 0 f p 1 ..^ f =