Step |
Hyp |
Ref |
Expression |
1 |
|
acycgrv.1 |
|- V = ( Vtx ` G ) |
2 |
|
cyclispth |
|- ( f ( Cycles ` G ) p -> f ( Paths ` G ) p ) |
3 |
1
|
pthhashvtx |
|- ( f ( Paths ` G ) p -> ( # ` f ) <_ ( # ` V ) ) |
4 |
2 3
|
syl |
|- ( f ( Cycles ` G ) p -> ( # ` f ) <_ ( # ` V ) ) |
5 |
4
|
adantr |
|- ( ( f ( Cycles ` G ) p /\ ( # ` V ) = 1 ) -> ( # ` f ) <_ ( # ` V ) ) |
6 |
|
breq2 |
|- ( ( # ` V ) = 1 -> ( ( # ` f ) <_ ( # ` V ) <-> ( # ` f ) <_ 1 ) ) |
7 |
6
|
adantl |
|- ( ( f ( Cycles ` G ) p /\ ( # ` V ) = 1 ) -> ( ( # ` f ) <_ ( # ` V ) <-> ( # ` f ) <_ 1 ) ) |
8 |
5 7
|
mpbid |
|- ( ( f ( Cycles ` G ) p /\ ( # ` V ) = 1 ) -> ( # ` f ) <_ 1 ) |
9 |
8
|
3adant1 |
|- ( ( G e. UMGraph /\ f ( Cycles ` G ) p /\ ( # ` V ) = 1 ) -> ( # ` f ) <_ 1 ) |
10 |
|
umgrn1cycl |
|- ( ( G e. UMGraph /\ f ( Cycles ` G ) p ) -> ( # ` f ) =/= 1 ) |
11 |
10
|
3adant3 |
|- ( ( G e. UMGraph /\ f ( Cycles ` G ) p /\ ( # ` V ) = 1 ) -> ( # ` f ) =/= 1 ) |
12 |
11
|
necomd |
|- ( ( G e. UMGraph /\ f ( Cycles ` G ) p /\ ( # ` V ) = 1 ) -> 1 =/= ( # ` f ) ) |
13 |
|
cycliswlk |
|- ( f ( Cycles ` G ) p -> f ( Walks ` G ) p ) |
14 |
|
wlkcl |
|- ( f ( Walks ` G ) p -> ( # ` f ) e. NN0 ) |
15 |
14
|
nn0red |
|- ( f ( Walks ` G ) p -> ( # ` f ) e. RR ) |
16 |
|
1red |
|- ( f ( Walks ` G ) p -> 1 e. RR ) |
17 |
15 16
|
ltlend |
|- ( f ( Walks ` G ) p -> ( ( # ` f ) < 1 <-> ( ( # ` f ) <_ 1 /\ 1 =/= ( # ` f ) ) ) ) |
18 |
13 17
|
syl |
|- ( f ( Cycles ` G ) p -> ( ( # ` f ) < 1 <-> ( ( # ` f ) <_ 1 /\ 1 =/= ( # ` f ) ) ) ) |
19 |
18
|
3ad2ant2 |
|- ( ( G e. UMGraph /\ f ( Cycles ` G ) p /\ ( # ` V ) = 1 ) -> ( ( # ` f ) < 1 <-> ( ( # ` f ) <_ 1 /\ 1 =/= ( # ` f ) ) ) ) |
20 |
9 12 19
|
mpbir2and |
|- ( ( G e. UMGraph /\ f ( Cycles ` G ) p /\ ( # ` V ) = 1 ) -> ( # ` f ) < 1 ) |
21 |
|
nn0lt10b |
|- ( ( # ` f ) e. NN0 -> ( ( # ` f ) < 1 <-> ( # ` f ) = 0 ) ) |
22 |
13 14 21
|
3syl |
|- ( f ( Cycles ` G ) p -> ( ( # ` f ) < 1 <-> ( # ` f ) = 0 ) ) |
23 |
22
|
3ad2ant2 |
|- ( ( G e. UMGraph /\ f ( Cycles ` G ) p /\ ( # ` V ) = 1 ) -> ( ( # ` f ) < 1 <-> ( # ` f ) = 0 ) ) |
24 |
20 23
|
mpbid |
|- ( ( G e. UMGraph /\ f ( Cycles ` G ) p /\ ( # ` V ) = 1 ) -> ( # ` f ) = 0 ) |
25 |
|
hasheq0 |
|- ( f e. _V -> ( ( # ` f ) = 0 <-> f = (/) ) ) |
26 |
25
|
elv |
|- ( ( # ` f ) = 0 <-> f = (/) ) |
27 |
24 26
|
sylib |
|- ( ( G e. UMGraph /\ f ( Cycles ` G ) p /\ ( # ` V ) = 1 ) -> f = (/) ) |
28 |
27
|
3com23 |
|- ( ( G e. UMGraph /\ ( # ` V ) = 1 /\ f ( Cycles ` G ) p ) -> f = (/) ) |
29 |
28
|
3expia |
|- ( ( G e. UMGraph /\ ( # ` V ) = 1 ) -> ( f ( Cycles ` G ) p -> f = (/) ) ) |
30 |
29
|
alrimivv |
|- ( ( G e. UMGraph /\ ( # ` V ) = 1 ) -> A. f A. p ( f ( Cycles ` G ) p -> f = (/) ) ) |
31 |
|
isacycgr1 |
|- ( G e. UMGraph -> ( G e. AcyclicGraph <-> A. f A. p ( f ( Cycles ` G ) p -> f = (/) ) ) ) |
32 |
31
|
adantr |
|- ( ( G e. UMGraph /\ ( # ` V ) = 1 ) -> ( G e. AcyclicGraph <-> A. f A. p ( f ( Cycles ` G ) p -> f = (/) ) ) ) |
33 |
30 32
|
mpbird |
|- ( ( G e. UMGraph /\ ( # ` V ) = 1 ) -> G e. AcyclicGraph ) |