| Step |
Hyp |
Ref |
Expression |
| 1 |
|
acycgrv.1 |
|- V = ( Vtx ` G ) |
| 2 |
|
cyclispth |
|- ( f ( Cycles ` G ) p -> f ( Paths ` G ) p ) |
| 3 |
1
|
pthhashvtx |
|- ( f ( Paths ` G ) p -> ( # ` f ) <_ ( # ` V ) ) |
| 4 |
2 3
|
syl |
|- ( f ( Cycles ` G ) p -> ( # ` f ) <_ ( # ` V ) ) |
| 5 |
4
|
adantr |
|- ( ( f ( Cycles ` G ) p /\ ( # ` V ) = 1 ) -> ( # ` f ) <_ ( # ` V ) ) |
| 6 |
|
breq2 |
|- ( ( # ` V ) = 1 -> ( ( # ` f ) <_ ( # ` V ) <-> ( # ` f ) <_ 1 ) ) |
| 7 |
6
|
adantl |
|- ( ( f ( Cycles ` G ) p /\ ( # ` V ) = 1 ) -> ( ( # ` f ) <_ ( # ` V ) <-> ( # ` f ) <_ 1 ) ) |
| 8 |
5 7
|
mpbid |
|- ( ( f ( Cycles ` G ) p /\ ( # ` V ) = 1 ) -> ( # ` f ) <_ 1 ) |
| 9 |
8
|
3adant1 |
|- ( ( G e. UMGraph /\ f ( Cycles ` G ) p /\ ( # ` V ) = 1 ) -> ( # ` f ) <_ 1 ) |
| 10 |
|
umgrn1cycl |
|- ( ( G e. UMGraph /\ f ( Cycles ` G ) p ) -> ( # ` f ) =/= 1 ) |
| 11 |
10
|
3adant3 |
|- ( ( G e. UMGraph /\ f ( Cycles ` G ) p /\ ( # ` V ) = 1 ) -> ( # ` f ) =/= 1 ) |
| 12 |
11
|
necomd |
|- ( ( G e. UMGraph /\ f ( Cycles ` G ) p /\ ( # ` V ) = 1 ) -> 1 =/= ( # ` f ) ) |
| 13 |
|
cycliswlk |
|- ( f ( Cycles ` G ) p -> f ( Walks ` G ) p ) |
| 14 |
|
wlkcl |
|- ( f ( Walks ` G ) p -> ( # ` f ) e. NN0 ) |
| 15 |
14
|
nn0red |
|- ( f ( Walks ` G ) p -> ( # ` f ) e. RR ) |
| 16 |
|
1red |
|- ( f ( Walks ` G ) p -> 1 e. RR ) |
| 17 |
15 16
|
ltlend |
|- ( f ( Walks ` G ) p -> ( ( # ` f ) < 1 <-> ( ( # ` f ) <_ 1 /\ 1 =/= ( # ` f ) ) ) ) |
| 18 |
13 17
|
syl |
|- ( f ( Cycles ` G ) p -> ( ( # ` f ) < 1 <-> ( ( # ` f ) <_ 1 /\ 1 =/= ( # ` f ) ) ) ) |
| 19 |
18
|
3ad2ant2 |
|- ( ( G e. UMGraph /\ f ( Cycles ` G ) p /\ ( # ` V ) = 1 ) -> ( ( # ` f ) < 1 <-> ( ( # ` f ) <_ 1 /\ 1 =/= ( # ` f ) ) ) ) |
| 20 |
9 12 19
|
mpbir2and |
|- ( ( G e. UMGraph /\ f ( Cycles ` G ) p /\ ( # ` V ) = 1 ) -> ( # ` f ) < 1 ) |
| 21 |
|
nn0lt10b |
|- ( ( # ` f ) e. NN0 -> ( ( # ` f ) < 1 <-> ( # ` f ) = 0 ) ) |
| 22 |
13 14 21
|
3syl |
|- ( f ( Cycles ` G ) p -> ( ( # ` f ) < 1 <-> ( # ` f ) = 0 ) ) |
| 23 |
22
|
3ad2ant2 |
|- ( ( G e. UMGraph /\ f ( Cycles ` G ) p /\ ( # ` V ) = 1 ) -> ( ( # ` f ) < 1 <-> ( # ` f ) = 0 ) ) |
| 24 |
20 23
|
mpbid |
|- ( ( G e. UMGraph /\ f ( Cycles ` G ) p /\ ( # ` V ) = 1 ) -> ( # ` f ) = 0 ) |
| 25 |
|
hasheq0 |
|- ( f e. _V -> ( ( # ` f ) = 0 <-> f = (/) ) ) |
| 26 |
25
|
elv |
|- ( ( # ` f ) = 0 <-> f = (/) ) |
| 27 |
24 26
|
sylib |
|- ( ( G e. UMGraph /\ f ( Cycles ` G ) p /\ ( # ` V ) = 1 ) -> f = (/) ) |
| 28 |
27
|
3com23 |
|- ( ( G e. UMGraph /\ ( # ` V ) = 1 /\ f ( Cycles ` G ) p ) -> f = (/) ) |
| 29 |
28
|
3expia |
|- ( ( G e. UMGraph /\ ( # ` V ) = 1 ) -> ( f ( Cycles ` G ) p -> f = (/) ) ) |
| 30 |
29
|
alrimivv |
|- ( ( G e. UMGraph /\ ( # ` V ) = 1 ) -> A. f A. p ( f ( Cycles ` G ) p -> f = (/) ) ) |
| 31 |
|
isacycgr1 |
|- ( G e. UMGraph -> ( G e. AcyclicGraph <-> A. f A. p ( f ( Cycles ` G ) p -> f = (/) ) ) ) |
| 32 |
31
|
adantr |
|- ( ( G e. UMGraph /\ ( # ` V ) = 1 ) -> ( G e. AcyclicGraph <-> A. f A. p ( f ( Cycles ` G ) p -> f = (/) ) ) ) |
| 33 |
30 32
|
mpbird |
|- ( ( G e. UMGraph /\ ( # ` V ) = 1 ) -> G e. AcyclicGraph ) |