| Step |
Hyp |
Ref |
Expression |
| 1 |
|
acycgrv.1 |
|- V = ( Vtx ` G ) |
| 2 |
1
|
usgrcyclgt2v |
|- ( ( G e. USGraph /\ f ( Cycles ` G ) p /\ f =/= (/) ) -> 2 < ( # ` V ) ) |
| 3 |
|
2re |
|- 2 e. RR |
| 4 |
3
|
rexri |
|- 2 e. RR* |
| 5 |
1
|
fvexi |
|- V e. _V |
| 6 |
|
hashxrcl |
|- ( V e. _V -> ( # ` V ) e. RR* ) |
| 7 |
5 6
|
ax-mp |
|- ( # ` V ) e. RR* |
| 8 |
|
xrltne |
|- ( ( 2 e. RR* /\ ( # ` V ) e. RR* /\ 2 < ( # ` V ) ) -> ( # ` V ) =/= 2 ) |
| 9 |
4 7 8
|
mp3an12 |
|- ( 2 < ( # ` V ) -> ( # ` V ) =/= 2 ) |
| 10 |
9
|
neneqd |
|- ( 2 < ( # ` V ) -> -. ( # ` V ) = 2 ) |
| 11 |
2 10
|
syl |
|- ( ( G e. USGraph /\ f ( Cycles ` G ) p /\ f =/= (/) ) -> -. ( # ` V ) = 2 ) |
| 12 |
11
|
3expib |
|- ( G e. USGraph -> ( ( f ( Cycles ` G ) p /\ f =/= (/) ) -> -. ( # ` V ) = 2 ) ) |
| 13 |
12
|
con2d |
|- ( G e. USGraph -> ( ( # ` V ) = 2 -> -. ( f ( Cycles ` G ) p /\ f =/= (/) ) ) ) |
| 14 |
13
|
imp |
|- ( ( G e. USGraph /\ ( # ` V ) = 2 ) -> -. ( f ( Cycles ` G ) p /\ f =/= (/) ) ) |
| 15 |
14
|
nexdv |
|- ( ( G e. USGraph /\ ( # ` V ) = 2 ) -> -. E. p ( f ( Cycles ` G ) p /\ f =/= (/) ) ) |
| 16 |
15
|
nexdv |
|- ( ( G e. USGraph /\ ( # ` V ) = 2 ) -> -. E. f E. p ( f ( Cycles ` G ) p /\ f =/= (/) ) ) |
| 17 |
|
isacycgr |
|- ( G e. USGraph -> ( G e. AcyclicGraph <-> -. E. f E. p ( f ( Cycles ` G ) p /\ f =/= (/) ) ) ) |
| 18 |
17
|
adantr |
|- ( ( G e. USGraph /\ ( # ` V ) = 2 ) -> ( G e. AcyclicGraph <-> -. E. f E. p ( f ( Cycles ` G ) p /\ f =/= (/) ) ) ) |
| 19 |
16 18
|
mpbird |
|- ( ( G e. USGraph /\ ( # ` V ) = 2 ) -> G e. AcyclicGraph ) |