Step |
Hyp |
Ref |
Expression |
1 |
|
acycgrv.1 |
|- V = ( Vtx ` G ) |
2 |
1
|
usgrcyclgt2v |
|- ( ( G e. USGraph /\ f ( Cycles ` G ) p /\ f =/= (/) ) -> 2 < ( # ` V ) ) |
3 |
|
2re |
|- 2 e. RR |
4 |
3
|
rexri |
|- 2 e. RR* |
5 |
1
|
fvexi |
|- V e. _V |
6 |
|
hashxrcl |
|- ( V e. _V -> ( # ` V ) e. RR* ) |
7 |
5 6
|
ax-mp |
|- ( # ` V ) e. RR* |
8 |
|
xrltne |
|- ( ( 2 e. RR* /\ ( # ` V ) e. RR* /\ 2 < ( # ` V ) ) -> ( # ` V ) =/= 2 ) |
9 |
4 7 8
|
mp3an12 |
|- ( 2 < ( # ` V ) -> ( # ` V ) =/= 2 ) |
10 |
9
|
neneqd |
|- ( 2 < ( # ` V ) -> -. ( # ` V ) = 2 ) |
11 |
2 10
|
syl |
|- ( ( G e. USGraph /\ f ( Cycles ` G ) p /\ f =/= (/) ) -> -. ( # ` V ) = 2 ) |
12 |
11
|
3expib |
|- ( G e. USGraph -> ( ( f ( Cycles ` G ) p /\ f =/= (/) ) -> -. ( # ` V ) = 2 ) ) |
13 |
12
|
con2d |
|- ( G e. USGraph -> ( ( # ` V ) = 2 -> -. ( f ( Cycles ` G ) p /\ f =/= (/) ) ) ) |
14 |
13
|
imp |
|- ( ( G e. USGraph /\ ( # ` V ) = 2 ) -> -. ( f ( Cycles ` G ) p /\ f =/= (/) ) ) |
15 |
14
|
nexdv |
|- ( ( G e. USGraph /\ ( # ` V ) = 2 ) -> -. E. p ( f ( Cycles ` G ) p /\ f =/= (/) ) ) |
16 |
15
|
nexdv |
|- ( ( G e. USGraph /\ ( # ` V ) = 2 ) -> -. E. f E. p ( f ( Cycles ` G ) p /\ f =/= (/) ) ) |
17 |
|
isacycgr |
|- ( G e. USGraph -> ( G e. AcyclicGraph <-> -. E. f E. p ( f ( Cycles ` G ) p /\ f =/= (/) ) ) ) |
18 |
17
|
adantr |
|- ( ( G e. USGraph /\ ( # ` V ) = 2 ) -> ( G e. AcyclicGraph <-> -. E. f E. p ( f ( Cycles ` G ) p /\ f =/= (/) ) ) ) |
19 |
16 18
|
mpbird |
|- ( ( G e. USGraph /\ ( # ` V ) = 2 ) -> G e. AcyclicGraph ) |