| Step |
Hyp |
Ref |
Expression |
| 1 |
|
usgrcyclgt2v.1 |
|- V = ( Vtx ` G ) |
| 2 |
|
2re |
|- 2 e. RR |
| 3 |
2
|
rexri |
|- 2 e. RR* |
| 4 |
3
|
a1i |
|- ( ( G e. USGraph /\ F ( Cycles ` G ) P /\ F =/= (/) ) -> 2 e. RR* ) |
| 5 |
|
cycliswlk |
|- ( F ( Cycles ` G ) P -> F ( Walks ` G ) P ) |
| 6 |
|
wlkcl |
|- ( F ( Walks ` G ) P -> ( # ` F ) e. NN0 ) |
| 7 |
|
nn0xnn0 |
|- ( ( # ` F ) e. NN0 -> ( # ` F ) e. NN0* ) |
| 8 |
|
xnn0xr |
|- ( ( # ` F ) e. NN0* -> ( # ` F ) e. RR* ) |
| 9 |
5 6 7 8
|
4syl |
|- ( F ( Cycles ` G ) P -> ( # ` F ) e. RR* ) |
| 10 |
9
|
3ad2ant2 |
|- ( ( G e. USGraph /\ F ( Cycles ` G ) P /\ F =/= (/) ) -> ( # ` F ) e. RR* ) |
| 11 |
1
|
fvexi |
|- V e. _V |
| 12 |
|
hashxnn0 |
|- ( V e. _V -> ( # ` V ) e. NN0* ) |
| 13 |
|
xnn0xr |
|- ( ( # ` V ) e. NN0* -> ( # ` V ) e. RR* ) |
| 14 |
11 12 13
|
mp2b |
|- ( # ` V ) e. RR* |
| 15 |
14
|
a1i |
|- ( ( G e. USGraph /\ F ( Cycles ` G ) P /\ F =/= (/) ) -> ( # ` V ) e. RR* ) |
| 16 |
|
usgrgt2cycl |
|- ( ( G e. USGraph /\ F ( Cycles ` G ) P /\ F =/= (/) ) -> 2 < ( # ` F ) ) |
| 17 |
|
cyclispth |
|- ( F ( Cycles ` G ) P -> F ( Paths ` G ) P ) |
| 18 |
1
|
pthhashvtx |
|- ( F ( Paths ` G ) P -> ( # ` F ) <_ ( # ` V ) ) |
| 19 |
17 18
|
syl |
|- ( F ( Cycles ` G ) P -> ( # ` F ) <_ ( # ` V ) ) |
| 20 |
19
|
3ad2ant2 |
|- ( ( G e. USGraph /\ F ( Cycles ` G ) P /\ F =/= (/) ) -> ( # ` F ) <_ ( # ` V ) ) |
| 21 |
4 10 15 16 20
|
xrltletrd |
|- ( ( G e. USGraph /\ F ( Cycles ` G ) P /\ F =/= (/) ) -> 2 < ( # ` V ) ) |