Step |
Hyp |
Ref |
Expression |
1 |
|
usgrcyclgt2v.1 |
|- V = ( Vtx ` G ) |
2 |
|
2re |
|- 2 e. RR |
3 |
2
|
rexri |
|- 2 e. RR* |
4 |
3
|
a1i |
|- ( ( G e. USGraph /\ F ( Cycles ` G ) P /\ F =/= (/) ) -> 2 e. RR* ) |
5 |
|
cycliswlk |
|- ( F ( Cycles ` G ) P -> F ( Walks ` G ) P ) |
6 |
|
wlkcl |
|- ( F ( Walks ` G ) P -> ( # ` F ) e. NN0 ) |
7 |
5 6
|
syl |
|- ( F ( Cycles ` G ) P -> ( # ` F ) e. NN0 ) |
8 |
|
nn0xnn0 |
|- ( ( # ` F ) e. NN0 -> ( # ` F ) e. NN0* ) |
9 |
|
xnn0xr |
|- ( ( # ` F ) e. NN0* -> ( # ` F ) e. RR* ) |
10 |
7 8 9
|
3syl |
|- ( F ( Cycles ` G ) P -> ( # ` F ) e. RR* ) |
11 |
10
|
3ad2ant2 |
|- ( ( G e. USGraph /\ F ( Cycles ` G ) P /\ F =/= (/) ) -> ( # ` F ) e. RR* ) |
12 |
1
|
fvexi |
|- V e. _V |
13 |
|
hashxnn0 |
|- ( V e. _V -> ( # ` V ) e. NN0* ) |
14 |
|
xnn0xr |
|- ( ( # ` V ) e. NN0* -> ( # ` V ) e. RR* ) |
15 |
12 13 14
|
mp2b |
|- ( # ` V ) e. RR* |
16 |
15
|
a1i |
|- ( ( G e. USGraph /\ F ( Cycles ` G ) P /\ F =/= (/) ) -> ( # ` V ) e. RR* ) |
17 |
|
usgrgt2cycl |
|- ( ( G e. USGraph /\ F ( Cycles ` G ) P /\ F =/= (/) ) -> 2 < ( # ` F ) ) |
18 |
|
cyclispth |
|- ( F ( Cycles ` G ) P -> F ( Paths ` G ) P ) |
19 |
1
|
pthhashvtx |
|- ( F ( Paths ` G ) P -> ( # ` F ) <_ ( # ` V ) ) |
20 |
18 19
|
syl |
|- ( F ( Cycles ` G ) P -> ( # ` F ) <_ ( # ` V ) ) |
21 |
20
|
3ad2ant2 |
|- ( ( G e. USGraph /\ F ( Cycles ` G ) P /\ F =/= (/) ) -> ( # ` F ) <_ ( # ` V ) ) |
22 |
4 11 16 17 21
|
xrltletrd |
|- ( ( G e. USGraph /\ F ( Cycles ` G ) P /\ F =/= (/) ) -> 2 < ( # ` V ) ) |