| Step |
Hyp |
Ref |
Expression |
| 1 |
|
usgrcyclgt2v.1 |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
|
2re |
⊢ 2 ∈ ℝ |
| 3 |
2
|
rexri |
⊢ 2 ∈ ℝ* |
| 4 |
3
|
a1i |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 ∧ 𝐹 ≠ ∅ ) → 2 ∈ ℝ* ) |
| 5 |
|
cycliswlk |
⊢ ( 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) |
| 6 |
|
wlkcl |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) |
| 7 |
|
nn0xnn0 |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ♯ ‘ 𝐹 ) ∈ ℕ0* ) |
| 8 |
|
xnn0xr |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0* → ( ♯ ‘ 𝐹 ) ∈ ℝ* ) |
| 9 |
5 6 7 8
|
4syl |
⊢ ( 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 → ( ♯ ‘ 𝐹 ) ∈ ℝ* ) |
| 10 |
9
|
3ad2ant2 |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 ∧ 𝐹 ≠ ∅ ) → ( ♯ ‘ 𝐹 ) ∈ ℝ* ) |
| 11 |
1
|
fvexi |
⊢ 𝑉 ∈ V |
| 12 |
|
hashxnn0 |
⊢ ( 𝑉 ∈ V → ( ♯ ‘ 𝑉 ) ∈ ℕ0* ) |
| 13 |
|
xnn0xr |
⊢ ( ( ♯ ‘ 𝑉 ) ∈ ℕ0* → ( ♯ ‘ 𝑉 ) ∈ ℝ* ) |
| 14 |
11 12 13
|
mp2b |
⊢ ( ♯ ‘ 𝑉 ) ∈ ℝ* |
| 15 |
14
|
a1i |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 ∧ 𝐹 ≠ ∅ ) → ( ♯ ‘ 𝑉 ) ∈ ℝ* ) |
| 16 |
|
usgrgt2cycl |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 ∧ 𝐹 ≠ ∅ ) → 2 < ( ♯ ‘ 𝐹 ) ) |
| 17 |
|
cyclispth |
⊢ ( 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 → 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) |
| 18 |
1
|
pthhashvtx |
⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ( ♯ ‘ 𝐹 ) ≤ ( ♯ ‘ 𝑉 ) ) |
| 19 |
17 18
|
syl |
⊢ ( 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 → ( ♯ ‘ 𝐹 ) ≤ ( ♯ ‘ 𝑉 ) ) |
| 20 |
19
|
3ad2ant2 |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 ∧ 𝐹 ≠ ∅ ) → ( ♯ ‘ 𝐹 ) ≤ ( ♯ ‘ 𝑉 ) ) |
| 21 |
4 10 15 16 20
|
xrltletrd |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 ∧ 𝐹 ≠ ∅ ) → 2 < ( ♯ ‘ 𝑉 ) ) |