Step |
Hyp |
Ref |
Expression |
1 |
|
usgrcyclgt2v.1 |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
2re |
⊢ 2 ∈ ℝ |
3 |
2
|
rexri |
⊢ 2 ∈ ℝ* |
4 |
3
|
a1i |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 ∧ 𝐹 ≠ ∅ ) → 2 ∈ ℝ* ) |
5 |
|
cycliswlk |
⊢ ( 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) |
6 |
|
wlkcl |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) |
7 |
|
nn0xnn0 |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ♯ ‘ 𝐹 ) ∈ ℕ0* ) |
8 |
|
xnn0xr |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0* → ( ♯ ‘ 𝐹 ) ∈ ℝ* ) |
9 |
5 6 7 8
|
4syl |
⊢ ( 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 → ( ♯ ‘ 𝐹 ) ∈ ℝ* ) |
10 |
9
|
3ad2ant2 |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 ∧ 𝐹 ≠ ∅ ) → ( ♯ ‘ 𝐹 ) ∈ ℝ* ) |
11 |
1
|
fvexi |
⊢ 𝑉 ∈ V |
12 |
|
hashxnn0 |
⊢ ( 𝑉 ∈ V → ( ♯ ‘ 𝑉 ) ∈ ℕ0* ) |
13 |
|
xnn0xr |
⊢ ( ( ♯ ‘ 𝑉 ) ∈ ℕ0* → ( ♯ ‘ 𝑉 ) ∈ ℝ* ) |
14 |
11 12 13
|
mp2b |
⊢ ( ♯ ‘ 𝑉 ) ∈ ℝ* |
15 |
14
|
a1i |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 ∧ 𝐹 ≠ ∅ ) → ( ♯ ‘ 𝑉 ) ∈ ℝ* ) |
16 |
|
usgrgt2cycl |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 ∧ 𝐹 ≠ ∅ ) → 2 < ( ♯ ‘ 𝐹 ) ) |
17 |
|
cyclispth |
⊢ ( 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 → 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) |
18 |
1
|
pthhashvtx |
⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ( ♯ ‘ 𝐹 ) ≤ ( ♯ ‘ 𝑉 ) ) |
19 |
17 18
|
syl |
⊢ ( 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 → ( ♯ ‘ 𝐹 ) ≤ ( ♯ ‘ 𝑉 ) ) |
20 |
19
|
3ad2ant2 |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 ∧ 𝐹 ≠ ∅ ) → ( ♯ ‘ 𝐹 ) ≤ ( ♯ ‘ 𝑉 ) ) |
21 |
4 10 15 16 20
|
xrltletrd |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 ∧ 𝐹 ≠ ∅ ) → 2 < ( ♯ ‘ 𝑉 ) ) |