Metamath Proof Explorer


Theorem usgrcyclgt2v

Description: A simple graph with a non-trivial cycle must have at least 3 vertices. (Contributed by BTernaryTau, 5-Oct-2023)

Ref Expression
Hypothesis usgrcyclgt2v.1 V = Vtx G
Assertion usgrcyclgt2v G USGraph F Cycles G P F 2 < V

Proof

Step Hyp Ref Expression
1 usgrcyclgt2v.1 V = Vtx G
2 2re 2
3 2 rexri 2 *
4 3 a1i G USGraph F Cycles G P F 2 *
5 cycliswlk F Cycles G P F Walks G P
6 wlkcl F Walks G P F 0
7 nn0xnn0 F 0 F 0 *
8 xnn0xr F 0 * F *
9 5 6 7 8 4syl F Cycles G P F *
10 9 3ad2ant2 G USGraph F Cycles G P F F *
11 1 fvexi V V
12 hashxnn0 V V V 0 *
13 xnn0xr V 0 * V *
14 11 12 13 mp2b V *
15 14 a1i G USGraph F Cycles G P F V *
16 usgrgt2cycl G USGraph F Cycles G P F 2 < F
17 cyclispth F Cycles G P F Paths G P
18 1 pthhashvtx F Paths G P F V
19 17 18 syl F Cycles G P F V
20 19 3ad2ant2 G USGraph F Cycles G P F F V
21 4 10 15 16 20 xrltletrd G USGraph F Cycles G P F 2 < V