Metamath Proof Explorer


Theorem subgrwlk

Description: If a walk exists in a subgraph of a graph G , then that walk also exists in G . (Contributed by BTernaryTau, 22-Oct-2023)

Ref Expression
Assertion subgrwlk S SubGraph G F Walks S P F Walks G P

Proof

Step Hyp Ref Expression
1 subgrv S SubGraph G S V G V
2 1 simpld S SubGraph G S V
3 eqid Vtx S = Vtx S
4 eqid iEdg S = iEdg S
5 3 4 iswlkg S V F Walks S P F Word dom iEdg S P : 0 F Vtx S k 0 ..^ F if- P k = P k + 1 iEdg S F k = P k P k P k + 1 iEdg S F k
6 2 5 syl S SubGraph G F Walks S P F Word dom iEdg S P : 0 F Vtx S k 0 ..^ F if- P k = P k + 1 iEdg S F k = P k P k P k + 1 iEdg S F k
7 3simpa F Word dom iEdg S P : 0 F Vtx S k 0 ..^ F if- P k = P k + 1 iEdg S F k = P k P k P k + 1 iEdg S F k F Word dom iEdg S P : 0 F Vtx S
8 eqid Vtx G = Vtx G
9 eqid iEdg G = iEdg G
10 eqid Edg S = Edg S
11 3 8 4 9 10 subgrprop2 S SubGraph G Vtx S Vtx G iEdg S iEdg G Edg S 𝒫 Vtx S
12 11 simp2d S SubGraph G iEdg S iEdg G
13 dmss iEdg S iEdg G dom iEdg S dom iEdg G
14 sswrd dom iEdg S dom iEdg G Word dom iEdg S Word dom iEdg G
15 12 13 14 3syl S SubGraph G Word dom iEdg S Word dom iEdg G
16 15 sseld S SubGraph G F Word dom iEdg S F Word dom iEdg G
17 11 simp1d S SubGraph G Vtx S Vtx G
18 fss P : 0 F Vtx S Vtx S Vtx G P : 0 F Vtx G
19 18 expcom Vtx S Vtx G P : 0 F Vtx S P : 0 F Vtx G
20 17 19 syl S SubGraph G P : 0 F Vtx S P : 0 F Vtx G
21 16 20 anim12d S SubGraph G F Word dom iEdg S P : 0 F Vtx S F Word dom iEdg G P : 0 F Vtx G
22 7 21 syl5 S SubGraph G F Word dom iEdg S P : 0 F Vtx S k 0 ..^ F if- P k = P k + 1 iEdg S F k = P k P k P k + 1 iEdg S F k F Word dom iEdg G P : 0 F Vtx G
23 3simpb F Word dom iEdg S P : 0 F Vtx S k 0 ..^ F if- P k = P k + 1 iEdg S F k = P k P k P k + 1 iEdg S F k F Word dom iEdg S k 0 ..^ F if- P k = P k + 1 iEdg S F k = P k P k P k + 1 iEdg S F k
24 3 8 4 9 10 subgrprop S SubGraph G Vtx S Vtx G iEdg S = iEdg G dom iEdg S Edg S 𝒫 Vtx S
25 24 simp2d S SubGraph G iEdg S = iEdg G dom iEdg S
26 25 fveq1d S SubGraph G iEdg S F k = iEdg G dom iEdg S F k
27 26 3ad2ant1 S SubGraph G F Word dom iEdg S k 0 ..^ F iEdg S F k = iEdg G dom iEdg S F k
28 wrdsymbcl F Word dom iEdg S k 0 ..^ F F k dom iEdg S
29 28 fvresd F Word dom iEdg S k 0 ..^ F iEdg G dom iEdg S F k = iEdg G F k
30 29 3adant1 S SubGraph G F Word dom iEdg S k 0 ..^ F iEdg G dom iEdg S F k = iEdg G F k
31 27 30 eqtrd S SubGraph G F Word dom iEdg S k 0 ..^ F iEdg S F k = iEdg G F k
32 31 eqeq1d S SubGraph G F Word dom iEdg S k 0 ..^ F iEdg S F k = P k iEdg G F k = P k
33 31 sseq2d S SubGraph G F Word dom iEdg S k 0 ..^ F P k P k + 1 iEdg S F k P k P k + 1 iEdg G F k
34 32 33 ifpbi23d S SubGraph G F Word dom iEdg S k 0 ..^ F if- P k = P k + 1 iEdg S F k = P k P k P k + 1 iEdg S F k if- P k = P k + 1 iEdg G F k = P k P k P k + 1 iEdg G F k
35 34 biimpd S SubGraph G F Word dom iEdg S k 0 ..^ F if- P k = P k + 1 iEdg S F k = P k P k P k + 1 iEdg S F k if- P k = P k + 1 iEdg G F k = P k P k P k + 1 iEdg G F k
36 35 3expia S SubGraph G F Word dom iEdg S k 0 ..^ F if- P k = P k + 1 iEdg S F k = P k P k P k + 1 iEdg S F k if- P k = P k + 1 iEdg G F k = P k P k P k + 1 iEdg G F k
37 36 ralrimiv S SubGraph G F Word dom iEdg S k 0 ..^ F if- P k = P k + 1 iEdg S F k = P k P k P k + 1 iEdg S F k if- P k = P k + 1 iEdg G F k = P k P k P k + 1 iEdg G F k
38 ralim k 0 ..^ F if- P k = P k + 1 iEdg S F k = P k P k P k + 1 iEdg S F k if- P k = P k + 1 iEdg G F k = P k P k P k + 1 iEdg G F k k 0 ..^ F if- P k = P k + 1 iEdg S F k = P k P k P k + 1 iEdg S F k k 0 ..^ F if- P k = P k + 1 iEdg G F k = P k P k P k + 1 iEdg G F k
39 37 38 syl S SubGraph G F Word dom iEdg S k 0 ..^ F if- P k = P k + 1 iEdg S F k = P k P k P k + 1 iEdg S F k k 0 ..^ F if- P k = P k + 1 iEdg G F k = P k P k P k + 1 iEdg G F k
40 39 expimpd S SubGraph G F Word dom iEdg S k 0 ..^ F if- P k = P k + 1 iEdg S F k = P k P k P k + 1 iEdg S F k k 0 ..^ F if- P k = P k + 1 iEdg G F k = P k P k P k + 1 iEdg G F k
41 23 40 syl5 S SubGraph G F Word dom iEdg S P : 0 F Vtx S k 0 ..^ F if- P k = P k + 1 iEdg S F k = P k P k P k + 1 iEdg S F k k 0 ..^ F if- P k = P k + 1 iEdg G F k = P k P k P k + 1 iEdg G F k
42 22 41 jcad S SubGraph G F Word dom iEdg S P : 0 F Vtx S k 0 ..^ F if- P k = P k + 1 iEdg S F k = P k P k P k + 1 iEdg S F k F Word dom iEdg G P : 0 F Vtx G k 0 ..^ F if- P k = P k + 1 iEdg G F k = P k P k P k + 1 iEdg G F k
43 6 42 sylbid S SubGraph G F Walks S P F Word dom iEdg G P : 0 F Vtx G k 0 ..^ F if- P k = P k + 1 iEdg G F k = P k P k P k + 1 iEdg G F k
44 df-3an F Word dom iEdg G P : 0 F Vtx G k 0 ..^ F if- P k = P k + 1 iEdg G F k = P k P k P k + 1 iEdg G F k F Word dom iEdg G P : 0 F Vtx G k 0 ..^ F if- P k = P k + 1 iEdg G F k = P k P k P k + 1 iEdg G F k
45 43 44 syl6ibr S SubGraph G F Walks S P F Word dom iEdg G P : 0 F Vtx G k 0 ..^ F if- P k = P k + 1 iEdg G F k = P k P k P k + 1 iEdg G F k
46 8 9 iswlkg G V F Walks G P F Word dom iEdg G P : 0 F Vtx G k 0 ..^ F if- P k = P k + 1 iEdg G F k = P k P k P k + 1 iEdg G F k
47 1 46 simpl2im S SubGraph G F Walks G P F Word dom iEdg G P : 0 F Vtx G k 0 ..^ F if- P k = P k + 1 iEdg G F k = P k P k P k + 1 iEdg G F k
48 45 47 sylibrd S SubGraph G F Walks S P F Walks G P