| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subgrv |
|
| 2 |
1
|
simpld |
|
| 3 |
|
eqid |
|
| 4 |
|
eqid |
|
| 5 |
3 4
|
iswlkg |
|
| 6 |
2 5
|
syl |
|
| 7 |
|
3simpa |
|
| 8 |
|
eqid |
|
| 9 |
|
eqid |
|
| 10 |
|
eqid |
|
| 11 |
3 8 4 9 10
|
subgrprop2 |
|
| 12 |
11
|
simp2d |
|
| 13 |
|
dmss |
|
| 14 |
|
sswrd |
|
| 15 |
12 13 14
|
3syl |
|
| 16 |
15
|
sseld |
|
| 17 |
11
|
simp1d |
|
| 18 |
|
fss |
|
| 19 |
18
|
expcom |
|
| 20 |
17 19
|
syl |
|
| 21 |
16 20
|
anim12d |
|
| 22 |
7 21
|
syl5 |
|
| 23 |
|
3simpb |
|
| 24 |
3 8 4 9 10
|
subgrprop |
|
| 25 |
24
|
simp2d |
|
| 26 |
25
|
fveq1d |
|
| 27 |
26
|
3ad2ant1 |
|
| 28 |
|
wrdsymbcl |
|
| 29 |
28
|
fvresd |
|
| 30 |
29
|
3adant1 |
|
| 31 |
27 30
|
eqtrd |
|
| 32 |
31
|
eqeq1d |
|
| 33 |
31
|
sseq2d |
|
| 34 |
32 33
|
ifpbi23d |
|
| 35 |
34
|
biimpd |
|
| 36 |
35
|
3expia |
|
| 37 |
36
|
ralrimiv |
|
| 38 |
|
ralim |
|
| 39 |
37 38
|
syl |
|
| 40 |
39
|
expimpd |
|
| 41 |
23 40
|
syl5 |
|
| 42 |
22 41
|
jcad |
|
| 43 |
6 42
|
sylbid |
|
| 44 |
|
df-3an |
|
| 45 |
43 44
|
imbitrrdi |
|
| 46 |
8 9
|
iswlkg |
|
| 47 |
1 46
|
simpl2im |
|
| 48 |
45 47
|
sylibrd |
|