Step |
Hyp |
Ref |
Expression |
1 |
|
subgrv |
|
2 |
1
|
simpld |
|
3 |
|
eqid |
|
4 |
|
eqid |
|
5 |
3 4
|
iswlkg |
|
6 |
2 5
|
syl |
|
7 |
|
3simpa |
|
8 |
|
eqid |
|
9 |
|
eqid |
|
10 |
|
eqid |
|
11 |
3 8 4 9 10
|
subgrprop2 |
|
12 |
11
|
simp2d |
|
13 |
|
dmss |
|
14 |
|
sswrd |
|
15 |
12 13 14
|
3syl |
|
16 |
15
|
sseld |
|
17 |
11
|
simp1d |
|
18 |
|
fss |
|
19 |
18
|
expcom |
|
20 |
17 19
|
syl |
|
21 |
16 20
|
anim12d |
|
22 |
7 21
|
syl5 |
|
23 |
|
3simpb |
|
24 |
3 8 4 9 10
|
subgrprop |
|
25 |
24
|
simp2d |
|
26 |
25
|
fveq1d |
|
27 |
26
|
3ad2ant1 |
|
28 |
|
wrdsymbcl |
|
29 |
28
|
fvresd |
|
30 |
29
|
3adant1 |
|
31 |
27 30
|
eqtrd |
|
32 |
31
|
eqeq1d |
|
33 |
31
|
sseq2d |
|
34 |
32 33
|
ifpbi23d |
|
35 |
34
|
biimpd |
|
36 |
35
|
3expia |
|
37 |
36
|
ralrimiv |
|
38 |
|
ralim |
|
39 |
37 38
|
syl |
|
40 |
39
|
expimpd |
|
41 |
23 40
|
syl5 |
|
42 |
22 41
|
jcad |
|
43 |
6 42
|
sylbid |
|
44 |
|
df-3an |
|
45 |
43 44
|
syl6ibr |
|
46 |
8 9
|
iswlkg |
|
47 |
1 46
|
simpl2im |
|
48 |
45 47
|
sylibrd |
|