| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subgrv |
|- ( S SubGraph G -> ( S e. _V /\ G e. _V ) ) |
| 2 |
1
|
simpld |
|- ( S SubGraph G -> S e. _V ) |
| 3 |
|
eqid |
|- ( Vtx ` S ) = ( Vtx ` S ) |
| 4 |
|
eqid |
|- ( iEdg ` S ) = ( iEdg ` S ) |
| 5 |
3 4
|
iswlkg |
|- ( S e. _V -> ( F ( Walks ` S ) P <-> ( F e. Word dom ( iEdg ` S ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` S ) /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` S ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` S ) ` ( F ` k ) ) ) ) ) ) |
| 6 |
2 5
|
syl |
|- ( S SubGraph G -> ( F ( Walks ` S ) P <-> ( F e. Word dom ( iEdg ` S ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` S ) /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` S ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` S ) ` ( F ` k ) ) ) ) ) ) |
| 7 |
|
3simpa |
|- ( ( F e. Word dom ( iEdg ` S ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` S ) /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` S ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` S ) ` ( F ` k ) ) ) ) -> ( F e. Word dom ( iEdg ` S ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` S ) ) ) |
| 8 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
| 9 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
| 10 |
|
eqid |
|- ( Edg ` S ) = ( Edg ` S ) |
| 11 |
3 8 4 9 10
|
subgrprop2 |
|- ( S SubGraph G -> ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) ) |
| 12 |
11
|
simp2d |
|- ( S SubGraph G -> ( iEdg ` S ) C_ ( iEdg ` G ) ) |
| 13 |
|
dmss |
|- ( ( iEdg ` S ) C_ ( iEdg ` G ) -> dom ( iEdg ` S ) C_ dom ( iEdg ` G ) ) |
| 14 |
|
sswrd |
|- ( dom ( iEdg ` S ) C_ dom ( iEdg ` G ) -> Word dom ( iEdg ` S ) C_ Word dom ( iEdg ` G ) ) |
| 15 |
12 13 14
|
3syl |
|- ( S SubGraph G -> Word dom ( iEdg ` S ) C_ Word dom ( iEdg ` G ) ) |
| 16 |
15
|
sseld |
|- ( S SubGraph G -> ( F e. Word dom ( iEdg ` S ) -> F e. Word dom ( iEdg ` G ) ) ) |
| 17 |
11
|
simp1d |
|- ( S SubGraph G -> ( Vtx ` S ) C_ ( Vtx ` G ) ) |
| 18 |
|
fss |
|- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` S ) /\ ( Vtx ` S ) C_ ( Vtx ` G ) ) -> P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) |
| 19 |
18
|
expcom |
|- ( ( Vtx ` S ) C_ ( Vtx ` G ) -> ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` S ) -> P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) ) |
| 20 |
17 19
|
syl |
|- ( S SubGraph G -> ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` S ) -> P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) ) |
| 21 |
16 20
|
anim12d |
|- ( S SubGraph G -> ( ( F e. Word dom ( iEdg ` S ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` S ) ) -> ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) ) ) |
| 22 |
7 21
|
syl5 |
|- ( S SubGraph G -> ( ( F e. Word dom ( iEdg ` S ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` S ) /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` S ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` S ) ` ( F ` k ) ) ) ) -> ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) ) ) |
| 23 |
|
3simpb |
|- ( ( F e. Word dom ( iEdg ` S ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` S ) /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` S ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` S ) ` ( F ` k ) ) ) ) -> ( F e. Word dom ( iEdg ` S ) /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` S ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` S ) ` ( F ` k ) ) ) ) ) |
| 24 |
3 8 4 9 10
|
subgrprop |
|- ( S SubGraph G -> ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) = ( ( iEdg ` G ) |` dom ( iEdg ` S ) ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) ) |
| 25 |
24
|
simp2d |
|- ( S SubGraph G -> ( iEdg ` S ) = ( ( iEdg ` G ) |` dom ( iEdg ` S ) ) ) |
| 26 |
25
|
fveq1d |
|- ( S SubGraph G -> ( ( iEdg ` S ) ` ( F ` k ) ) = ( ( ( iEdg ` G ) |` dom ( iEdg ` S ) ) ` ( F ` k ) ) ) |
| 27 |
26
|
3ad2ant1 |
|- ( ( S SubGraph G /\ F e. Word dom ( iEdg ` S ) /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( ( iEdg ` S ) ` ( F ` k ) ) = ( ( ( iEdg ` G ) |` dom ( iEdg ` S ) ) ` ( F ` k ) ) ) |
| 28 |
|
wrdsymbcl |
|- ( ( F e. Word dom ( iEdg ` S ) /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( F ` k ) e. dom ( iEdg ` S ) ) |
| 29 |
28
|
fvresd |
|- ( ( F e. Word dom ( iEdg ` S ) /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( ( ( iEdg ` G ) |` dom ( iEdg ` S ) ) ` ( F ` k ) ) = ( ( iEdg ` G ) ` ( F ` k ) ) ) |
| 30 |
29
|
3adant1 |
|- ( ( S SubGraph G /\ F e. Word dom ( iEdg ` S ) /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( ( ( iEdg ` G ) |` dom ( iEdg ` S ) ) ` ( F ` k ) ) = ( ( iEdg ` G ) ` ( F ` k ) ) ) |
| 31 |
27 30
|
eqtrd |
|- ( ( S SubGraph G /\ F e. Word dom ( iEdg ` S ) /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( ( iEdg ` S ) ` ( F ` k ) ) = ( ( iEdg ` G ) ` ( F ` k ) ) ) |
| 32 |
31
|
eqeq1d |
|- ( ( S SubGraph G /\ F e. Word dom ( iEdg ` S ) /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( ( ( iEdg ` S ) ` ( F ` k ) ) = { ( P ` k ) } <-> ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } ) ) |
| 33 |
31
|
sseq2d |
|- ( ( S SubGraph G /\ F e. Word dom ( iEdg ` S ) /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` S ) ` ( F ` k ) ) <-> { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) ) |
| 34 |
32 33
|
ifpbi23d |
|- ( ( S SubGraph G /\ F e. Word dom ( iEdg ` S ) /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` S ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` S ) ` ( F ` k ) ) ) <-> if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) ) ) |
| 35 |
34
|
biimpd |
|- ( ( S SubGraph G /\ F e. Word dom ( iEdg ` S ) /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` S ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` S ) ` ( F ` k ) ) ) -> if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) ) ) |
| 36 |
35
|
3expia |
|- ( ( S SubGraph G /\ F e. Word dom ( iEdg ` S ) ) -> ( k e. ( 0 ..^ ( # ` F ) ) -> ( if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` S ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` S ) ` ( F ` k ) ) ) -> if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) ) ) ) |
| 37 |
36
|
ralrimiv |
|- ( ( S SubGraph G /\ F e. Word dom ( iEdg ` S ) ) -> A. k e. ( 0 ..^ ( # ` F ) ) ( if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` S ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` S ) ` ( F ` k ) ) ) -> if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) ) ) |
| 38 |
|
ralim |
|- ( A. k e. ( 0 ..^ ( # ` F ) ) ( if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` S ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` S ) ` ( F ` k ) ) ) -> if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) ) -> ( A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` S ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` S ) ` ( F ` k ) ) ) -> A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) ) ) |
| 39 |
37 38
|
syl |
|- ( ( S SubGraph G /\ F e. Word dom ( iEdg ` S ) ) -> ( A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` S ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` S ) ` ( F ` k ) ) ) -> A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) ) ) |
| 40 |
39
|
expimpd |
|- ( S SubGraph G -> ( ( F e. Word dom ( iEdg ` S ) /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` S ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` S ) ` ( F ` k ) ) ) ) -> A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) ) ) |
| 41 |
23 40
|
syl5 |
|- ( S SubGraph G -> ( ( F e. Word dom ( iEdg ` S ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` S ) /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` S ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` S ) ` ( F ` k ) ) ) ) -> A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) ) ) |
| 42 |
22 41
|
jcad |
|- ( S SubGraph G -> ( ( F e. Word dom ( iEdg ` S ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` S ) /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` S ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` S ) ` ( F ` k ) ) ) ) -> ( ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) ) ) ) |
| 43 |
6 42
|
sylbid |
|- ( S SubGraph G -> ( F ( Walks ` S ) P -> ( ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) ) ) ) |
| 44 |
|
df-3an |
|- ( ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) ) <-> ( ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) ) ) |
| 45 |
43 44
|
imbitrrdi |
|- ( S SubGraph G -> ( F ( Walks ` S ) P -> ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) ) ) ) |
| 46 |
8 9
|
iswlkg |
|- ( G e. _V -> ( F ( Walks ` G ) P <-> ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) ) ) ) |
| 47 |
1 46
|
simpl2im |
|- ( S SubGraph G -> ( F ( Walks ` G ) P <-> ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) ) ) ) |
| 48 |
45 47
|
sylibrd |
|- ( S SubGraph G -> ( F ( Walks ` S ) P -> F ( Walks ` G ) P ) ) |