Step |
Hyp |
Ref |
Expression |
1 |
|
issubgr.v |
|- V = ( Vtx ` S ) |
2 |
|
issubgr.a |
|- A = ( Vtx ` G ) |
3 |
|
issubgr.i |
|- I = ( iEdg ` S ) |
4 |
|
issubgr.b |
|- B = ( iEdg ` G ) |
5 |
|
issubgr.e |
|- E = ( Edg ` S ) |
6 |
|
subgrv |
|- ( S SubGraph G -> ( S e. _V /\ G e. _V ) ) |
7 |
1 2 3 4 5
|
issubgr |
|- ( ( G e. _V /\ S e. _V ) -> ( S SubGraph G <-> ( V C_ A /\ I = ( B |` dom I ) /\ E C_ ~P V ) ) ) |
8 |
7
|
biimpd |
|- ( ( G e. _V /\ S e. _V ) -> ( S SubGraph G -> ( V C_ A /\ I = ( B |` dom I ) /\ E C_ ~P V ) ) ) |
9 |
8
|
ancoms |
|- ( ( S e. _V /\ G e. _V ) -> ( S SubGraph G -> ( V C_ A /\ I = ( B |` dom I ) /\ E C_ ~P V ) ) ) |
10 |
6 9
|
mpcom |
|- ( S SubGraph G -> ( V C_ A /\ I = ( B |` dom I ) /\ E C_ ~P V ) ) |