Metamath Proof Explorer


Theorem subgrprop

Description: The properties of a subgraph. (Contributed by AV, 19-Nov-2020)

Ref Expression
Hypotheses issubgr.v
|- V = ( Vtx ` S )
issubgr.a
|- A = ( Vtx ` G )
issubgr.i
|- I = ( iEdg ` S )
issubgr.b
|- B = ( iEdg ` G )
issubgr.e
|- E = ( Edg ` S )
Assertion subgrprop
|- ( S SubGraph G -> ( V C_ A /\ I = ( B |` dom I ) /\ E C_ ~P V ) )

Proof

Step Hyp Ref Expression
1 issubgr.v
 |-  V = ( Vtx ` S )
2 issubgr.a
 |-  A = ( Vtx ` G )
3 issubgr.i
 |-  I = ( iEdg ` S )
4 issubgr.b
 |-  B = ( iEdg ` G )
5 issubgr.e
 |-  E = ( Edg ` S )
6 subgrv
 |-  ( S SubGraph G -> ( S e. _V /\ G e. _V ) )
7 1 2 3 4 5 issubgr
 |-  ( ( G e. _V /\ S e. _V ) -> ( S SubGraph G <-> ( V C_ A /\ I = ( B |` dom I ) /\ E C_ ~P V ) ) )
8 7 biimpd
 |-  ( ( G e. _V /\ S e. _V ) -> ( S SubGraph G -> ( V C_ A /\ I = ( B |` dom I ) /\ E C_ ~P V ) ) )
9 8 ancoms
 |-  ( ( S e. _V /\ G e. _V ) -> ( S SubGraph G -> ( V C_ A /\ I = ( B |` dom I ) /\ E C_ ~P V ) ) )
10 6 9 mpcom
 |-  ( S SubGraph G -> ( V C_ A /\ I = ( B |` dom I ) /\ E C_ ~P V ) )