Step |
Hyp |
Ref |
Expression |
1 |
|
issubgr.v |
⊢ 𝑉 = ( Vtx ‘ 𝑆 ) |
2 |
|
issubgr.a |
⊢ 𝐴 = ( Vtx ‘ 𝐺 ) |
3 |
|
issubgr.i |
⊢ 𝐼 = ( iEdg ‘ 𝑆 ) |
4 |
|
issubgr.b |
⊢ 𝐵 = ( iEdg ‘ 𝐺 ) |
5 |
|
issubgr.e |
⊢ 𝐸 = ( Edg ‘ 𝑆 ) |
6 |
|
subgrv |
⊢ ( 𝑆 SubGraph 𝐺 → ( 𝑆 ∈ V ∧ 𝐺 ∈ V ) ) |
7 |
1 2 3 4 5
|
issubgr |
⊢ ( ( 𝐺 ∈ V ∧ 𝑆 ∈ V ) → ( 𝑆 SubGraph 𝐺 ↔ ( 𝑉 ⊆ 𝐴 ∧ 𝐼 = ( 𝐵 ↾ dom 𝐼 ) ∧ 𝐸 ⊆ 𝒫 𝑉 ) ) ) |
8 |
7
|
biimpd |
⊢ ( ( 𝐺 ∈ V ∧ 𝑆 ∈ V ) → ( 𝑆 SubGraph 𝐺 → ( 𝑉 ⊆ 𝐴 ∧ 𝐼 = ( 𝐵 ↾ dom 𝐼 ) ∧ 𝐸 ⊆ 𝒫 𝑉 ) ) ) |
9 |
8
|
ancoms |
⊢ ( ( 𝑆 ∈ V ∧ 𝐺 ∈ V ) → ( 𝑆 SubGraph 𝐺 → ( 𝑉 ⊆ 𝐴 ∧ 𝐼 = ( 𝐵 ↾ dom 𝐼 ) ∧ 𝐸 ⊆ 𝒫 𝑉 ) ) ) |
10 |
6 9
|
mpcom |
⊢ ( 𝑆 SubGraph 𝐺 → ( 𝑉 ⊆ 𝐴 ∧ 𝐼 = ( 𝐵 ↾ dom 𝐼 ) ∧ 𝐸 ⊆ 𝒫 𝑉 ) ) |