Metamath Proof Explorer


Theorem iswlkg

Description: Generalization of iswlk : Conditions for two classes to represent a walk. (Contributed by Alexander van der Vekens, 23-Jun-2018) (Revised by AV, 1-Jan-2021)

Ref Expression
Hypotheses iswlkg.v V=VtxG
iswlkg.i I=iEdgG
Assertion iswlkg GWFWalksGPFWorddomIP:0FVk0..^Fif-Pk=Pk+1IFk=PkPkPk+1IFk

Proof

Step Hyp Ref Expression
1 iswlkg.v V=VtxG
2 iswlkg.i I=iEdgG
3 wlkv FWalksGPGVFVPV
4 3simpc GVFVPVFVPV
5 3 4 syl FWalksGPFVPV
6 5 a1i GWFWalksGPFVPV
7 elex FWorddomIFV
8 ovex 0FV
9 1 fvexi VV
10 8 9 fpm P:0FVPV𝑝𝑚0F
11 10 elexd P:0FVPV
12 7 11 anim12i FWorddomIP:0FVFVPV
13 12 3adant3 FWorddomIP:0FVk0..^Fif-Pk=Pk+1IFk=PkPkPk+1IFkFVPV
14 13 a1i GWFWorddomIP:0FVk0..^Fif-Pk=Pk+1IFk=PkPkPk+1IFkFVPV
15 1 2 iswlk GWFVPVFWalksGPFWorddomIP:0FVk0..^Fif-Pk=Pk+1IFk=PkPkPk+1IFk
16 15 3expib GWFVPVFWalksGPFWorddomIP:0FVk0..^Fif-Pk=Pk+1IFk=PkPkPk+1IFk
17 6 14 16 pm5.21ndd GWFWalksGPFWorddomIP:0FVk0..^Fif-Pk=Pk+1IFk=PkPkPk+1IFk