Metamath Proof Explorer


Theorem iswlkg

Description: Generalization of iswlk : Conditions for two classes to represent a walk. (Contributed by Alexander van der Vekens, 23-Jun-2018) (Revised by AV, 1-Jan-2021)

Ref Expression
Hypotheses iswlkg.v V = Vtx G
iswlkg.i I = iEdg G
Assertion iswlkg G W F Walks G P F Word dom I P : 0 F V k 0 ..^ F if- P k = P k + 1 I F k = P k P k P k + 1 I F k

Proof

Step Hyp Ref Expression
1 iswlkg.v V = Vtx G
2 iswlkg.i I = iEdg G
3 wlkv F Walks G P G V F V P V
4 3simpc G V F V P V F V P V
5 3 4 syl F Walks G P F V P V
6 5 a1i G W F Walks G P F V P V
7 elex F Word dom I F V
8 ovex 0 F V
9 1 fvexi V V
10 8 9 fpm P : 0 F V P V 𝑝𝑚 0 F
11 10 elexd P : 0 F V P V
12 7 11 anim12i F Word dom I P : 0 F V F V P V
13 12 3adant3 F Word dom I P : 0 F V k 0 ..^ F if- P k = P k + 1 I F k = P k P k P k + 1 I F k F V P V
14 13 a1i G W F Word dom I P : 0 F V k 0 ..^ F if- P k = P k + 1 I F k = P k P k P k + 1 I F k F V P V
15 1 2 iswlk G W F V P V F Walks G P F Word dom I P : 0 F V k 0 ..^ F if- P k = P k + 1 I F k = P k P k P k + 1 I F k
16 15 3expib G W F V P V F Walks G P F Word dom I P : 0 F V k 0 ..^ F if- P k = P k + 1 I F k = P k P k P k + 1 I F k
17 6 14 16 pm5.21ndd G W F Walks G P F Word dom I P : 0 F V k 0 ..^ F if- P k = P k + 1 I F k = P k P k P k + 1 I F k