Metamath Proof Explorer


Theorem wlkf

Description: The mapping enumerating the (indices of the) edges of a walk is a word over the indices of the edges of the graph. (Contributed by AV, 5-Apr-2021)

Ref Expression
Hypothesis wlkf.i I=iEdgG
Assertion wlkf FWalksGPFWorddomI

Proof

Step Hyp Ref Expression
1 wlkf.i I=iEdgG
2 eqid VtxG=VtxG
3 2 1 wlkprop FWalksGPFWorddomIP:0FVtxGk0..^Fif-Pk=Pk+1IFk=PkPkPk+1IFk
4 3 simp1d FWalksGPFWorddomI