Metamath Proof Explorer


Theorem wlkprop

Description: Properties of a walk. (Contributed by AV, 5-Nov-2021)

Ref Expression
Hypotheses wksfval.v V=VtxG
wksfval.i I=iEdgG
Assertion wlkprop FWalksGPFWorddomIP:0FVk0..^Fif-Pk=Pk+1IFk=PkPkPk+1IFk

Proof

Step Hyp Ref Expression
1 wksfval.v V=VtxG
2 wksfval.i I=iEdgG
3 1 2 wksfval GVWalksG=fp|fWorddomIp:0fVk0..^fif-pk=pk+1Ifk=pkpkpk+1Ifk
4 3 brfvopab FWalksGPGVFVPV
5 1 2 iswlk GVFVPVFWalksGPFWorddomIP:0FVk0..^Fif-Pk=Pk+1IFk=PkPkPk+1IFk
6 5 biimpd GVFVPVFWalksGPFWorddomIP:0FVk0..^Fif-Pk=Pk+1IFk=PkPkPk+1IFk
7 4 6 mpcom FWalksGPFWorddomIP:0FVk0..^Fif-Pk=Pk+1IFk=PkPkPk+1IFk