Metamath Proof Explorer


Theorem usgrgt2cycl

Description: A non-trivial cycle in a simple graph has a length greater than 2. (Contributed by BTernaryTau, 24-Sep-2023)

Ref Expression
Assertion usgrgt2cycl G USGraph F Cycles G P F 2 < F

Proof

Step Hyp Ref Expression
1 cycliswlk F Cycles G P F Walks G P
2 wlkcl F Walks G P F 0
3 1 2 syl F Cycles G P F 0
4 3 nn0red F Cycles G P F
5 4 adantr F Cycles G P F F
6 2 nn0ge0d F Walks G P 0 F
7 1 6 syl F Cycles G P 0 F
8 7 adantr F Cycles G P F 0 F
9 relwlk Rel Walks G
10 9 brrelex1i F Walks G P F V
11 hasheq0 F V F = 0 F =
12 11 necon3bid F V F 0 F
13 12 bicomd F V F F 0
14 1 10 13 3syl F Cycles G P F F 0
15 14 biimpa F Cycles G P F F 0
16 5 8 15 ne0gt0d F Cycles G P F 0 < F
17 16 3adant1 G USGraph F Cycles G P F 0 < F
18 usgrumgr G USGraph G UMGraph
19 umgrn1cycl G UMGraph F Cycles G P F 1
20 18 19 sylan G USGraph F Cycles G P F 1
21 20 3adant3 G USGraph F Cycles G P F F 1
22 0nn0 0 0
23 nn0ltp1ne 0 0 F 0 0 + 1 < F 0 < F F 0 + 1
24 22 3 23 sylancr F Cycles G P 0 + 1 < F 0 < F F 0 + 1
25 0p1e1 0 + 1 = 1
26 25 breq1i 0 + 1 < F 1 < F
27 25 neeq2i F 0 + 1 F 1
28 27 anbi2i 0 < F F 0 + 1 0 < F F 1
29 24 26 28 3bitr3g F Cycles G P 1 < F 0 < F F 1
30 29 3ad2ant2 G USGraph F Cycles G P F 1 < F 0 < F F 1
31 17 21 30 mpbir2and G USGraph F Cycles G P F 1 < F
32 usgrn2cycl G USGraph F Cycles G P F 2
33 32 3adant3 G USGraph F Cycles G P F F 2
34 df-2 2 = 1 + 1
35 34 breq1i 2 < F 1 + 1 < F
36 1nn0 1 0
37 nn0ltp1ne 1 0 F 0 1 + 1 < F 1 < F F 1 + 1
38 36 3 37 sylancr F Cycles G P 1 + 1 < F 1 < F F 1 + 1
39 35 38 syl5bb F Cycles G P 2 < F 1 < F F 1 + 1
40 39 3ad2ant2 G USGraph F Cycles G P F 2 < F 1 < F F 1 + 1
41 34 neeq2i F 2 F 1 + 1
42 41 anbi2i 1 < F F 2 1 < F F 1 + 1
43 40 42 bitr4di G USGraph F Cycles G P F 2 < F 1 < F F 2
44 31 33 43 mpbir2and G USGraph F Cycles G P F 2 < F