Step |
Hyp |
Ref |
Expression |
1 |
|
cycliswlk |
|- ( F ( Cycles ` G ) P -> F ( Walks ` G ) P ) |
2 |
|
wlkcl |
|- ( F ( Walks ` G ) P -> ( # ` F ) e. NN0 ) |
3 |
1 2
|
syl |
|- ( F ( Cycles ` G ) P -> ( # ` F ) e. NN0 ) |
4 |
3
|
nn0red |
|- ( F ( Cycles ` G ) P -> ( # ` F ) e. RR ) |
5 |
4
|
adantr |
|- ( ( F ( Cycles ` G ) P /\ F =/= (/) ) -> ( # ` F ) e. RR ) |
6 |
2
|
nn0ge0d |
|- ( F ( Walks ` G ) P -> 0 <_ ( # ` F ) ) |
7 |
1 6
|
syl |
|- ( F ( Cycles ` G ) P -> 0 <_ ( # ` F ) ) |
8 |
7
|
adantr |
|- ( ( F ( Cycles ` G ) P /\ F =/= (/) ) -> 0 <_ ( # ` F ) ) |
9 |
|
relwlk |
|- Rel ( Walks ` G ) |
10 |
9
|
brrelex1i |
|- ( F ( Walks ` G ) P -> F e. _V ) |
11 |
|
hasheq0 |
|- ( F e. _V -> ( ( # ` F ) = 0 <-> F = (/) ) ) |
12 |
11
|
necon3bid |
|- ( F e. _V -> ( ( # ` F ) =/= 0 <-> F =/= (/) ) ) |
13 |
12
|
bicomd |
|- ( F e. _V -> ( F =/= (/) <-> ( # ` F ) =/= 0 ) ) |
14 |
1 10 13
|
3syl |
|- ( F ( Cycles ` G ) P -> ( F =/= (/) <-> ( # ` F ) =/= 0 ) ) |
15 |
14
|
biimpa |
|- ( ( F ( Cycles ` G ) P /\ F =/= (/) ) -> ( # ` F ) =/= 0 ) |
16 |
5 8 15
|
ne0gt0d |
|- ( ( F ( Cycles ` G ) P /\ F =/= (/) ) -> 0 < ( # ` F ) ) |
17 |
16
|
3adant1 |
|- ( ( G e. USGraph /\ F ( Cycles ` G ) P /\ F =/= (/) ) -> 0 < ( # ` F ) ) |
18 |
|
usgrumgr |
|- ( G e. USGraph -> G e. UMGraph ) |
19 |
|
umgrn1cycl |
|- ( ( G e. UMGraph /\ F ( Cycles ` G ) P ) -> ( # ` F ) =/= 1 ) |
20 |
18 19
|
sylan |
|- ( ( G e. USGraph /\ F ( Cycles ` G ) P ) -> ( # ` F ) =/= 1 ) |
21 |
20
|
3adant3 |
|- ( ( G e. USGraph /\ F ( Cycles ` G ) P /\ F =/= (/) ) -> ( # ` F ) =/= 1 ) |
22 |
|
0nn0 |
|- 0 e. NN0 |
23 |
|
nn0ltp1ne |
|- ( ( 0 e. NN0 /\ ( # ` F ) e. NN0 ) -> ( ( 0 + 1 ) < ( # ` F ) <-> ( 0 < ( # ` F ) /\ ( # ` F ) =/= ( 0 + 1 ) ) ) ) |
24 |
22 3 23
|
sylancr |
|- ( F ( Cycles ` G ) P -> ( ( 0 + 1 ) < ( # ` F ) <-> ( 0 < ( # ` F ) /\ ( # ` F ) =/= ( 0 + 1 ) ) ) ) |
25 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
26 |
25
|
breq1i |
|- ( ( 0 + 1 ) < ( # ` F ) <-> 1 < ( # ` F ) ) |
27 |
25
|
neeq2i |
|- ( ( # ` F ) =/= ( 0 + 1 ) <-> ( # ` F ) =/= 1 ) |
28 |
27
|
anbi2i |
|- ( ( 0 < ( # ` F ) /\ ( # ` F ) =/= ( 0 + 1 ) ) <-> ( 0 < ( # ` F ) /\ ( # ` F ) =/= 1 ) ) |
29 |
24 26 28
|
3bitr3g |
|- ( F ( Cycles ` G ) P -> ( 1 < ( # ` F ) <-> ( 0 < ( # ` F ) /\ ( # ` F ) =/= 1 ) ) ) |
30 |
29
|
3ad2ant2 |
|- ( ( G e. USGraph /\ F ( Cycles ` G ) P /\ F =/= (/) ) -> ( 1 < ( # ` F ) <-> ( 0 < ( # ` F ) /\ ( # ` F ) =/= 1 ) ) ) |
31 |
17 21 30
|
mpbir2and |
|- ( ( G e. USGraph /\ F ( Cycles ` G ) P /\ F =/= (/) ) -> 1 < ( # ` F ) ) |
32 |
|
usgrn2cycl |
|- ( ( G e. USGraph /\ F ( Cycles ` G ) P ) -> ( # ` F ) =/= 2 ) |
33 |
32
|
3adant3 |
|- ( ( G e. USGraph /\ F ( Cycles ` G ) P /\ F =/= (/) ) -> ( # ` F ) =/= 2 ) |
34 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
35 |
34
|
breq1i |
|- ( 2 < ( # ` F ) <-> ( 1 + 1 ) < ( # ` F ) ) |
36 |
|
1nn0 |
|- 1 e. NN0 |
37 |
|
nn0ltp1ne |
|- ( ( 1 e. NN0 /\ ( # ` F ) e. NN0 ) -> ( ( 1 + 1 ) < ( # ` F ) <-> ( 1 < ( # ` F ) /\ ( # ` F ) =/= ( 1 + 1 ) ) ) ) |
38 |
36 3 37
|
sylancr |
|- ( F ( Cycles ` G ) P -> ( ( 1 + 1 ) < ( # ` F ) <-> ( 1 < ( # ` F ) /\ ( # ` F ) =/= ( 1 + 1 ) ) ) ) |
39 |
35 38
|
syl5bb |
|- ( F ( Cycles ` G ) P -> ( 2 < ( # ` F ) <-> ( 1 < ( # ` F ) /\ ( # ` F ) =/= ( 1 + 1 ) ) ) ) |
40 |
39
|
3ad2ant2 |
|- ( ( G e. USGraph /\ F ( Cycles ` G ) P /\ F =/= (/) ) -> ( 2 < ( # ` F ) <-> ( 1 < ( # ` F ) /\ ( # ` F ) =/= ( 1 + 1 ) ) ) ) |
41 |
34
|
neeq2i |
|- ( ( # ` F ) =/= 2 <-> ( # ` F ) =/= ( 1 + 1 ) ) |
42 |
41
|
anbi2i |
|- ( ( 1 < ( # ` F ) /\ ( # ` F ) =/= 2 ) <-> ( 1 < ( # ` F ) /\ ( # ` F ) =/= ( 1 + 1 ) ) ) |
43 |
40 42
|
bitr4di |
|- ( ( G e. USGraph /\ F ( Cycles ` G ) P /\ F =/= (/) ) -> ( 2 < ( # ` F ) <-> ( 1 < ( # ` F ) /\ ( # ` F ) =/= 2 ) ) ) |
44 |
31 33 43
|
mpbir2and |
|- ( ( G e. USGraph /\ F ( Cycles ` G ) P /\ F =/= (/) ) -> 2 < ( # ` F ) ) |