Metamath Proof Explorer


Theorem nn0ltp1ne

Description: Nonnegative integer ordering relation. (Contributed by BTernaryTau, 24-Sep-2023)

Ref Expression
Assertion nn0ltp1ne
|- ( ( A e. NN0 /\ B e. NN0 ) -> ( ( A + 1 ) < B <-> ( A < B /\ B =/= ( A + 1 ) ) ) )

Proof

Step Hyp Ref Expression
1 nn0z
 |-  ( A e. NN0 -> A e. ZZ )
2 nn0z
 |-  ( B e. NN0 -> B e. ZZ )
3 zltp1ne
 |-  ( ( A e. ZZ /\ B e. ZZ ) -> ( ( A + 1 ) < B <-> ( A < B /\ B =/= ( A + 1 ) ) ) )
4 1 2 3 syl2an
 |-  ( ( A e. NN0 /\ B e. NN0 ) -> ( ( A + 1 ) < B <-> ( A < B /\ B =/= ( A + 1 ) ) ) )