Description: Nonnegative integer ordering relation. (Contributed by BTernaryTau, 24-Sep-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nn0ltp1ne | |- ( ( A e. NN0 /\ B e. NN0 ) -> ( ( A + 1 ) < B <-> ( A < B /\ B =/= ( A + 1 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0z | |- ( A e. NN0 -> A e. ZZ ) |
|
| 2 | nn0z | |- ( B e. NN0 -> B e. ZZ ) |
|
| 3 | zltp1ne | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( A + 1 ) < B <-> ( A < B /\ B =/= ( A + 1 ) ) ) ) |
|
| 4 | 1 2 3 | syl2an | |- ( ( A e. NN0 /\ B e. NN0 ) -> ( ( A + 1 ) < B <-> ( A < B /\ B =/= ( A + 1 ) ) ) ) |