| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0nn0 |
|- 0 e. NN0 |
| 2 |
|
eleq1 |
|- ( N = 0 -> ( N e. NN0 <-> 0 e. NN0 ) ) |
| 3 |
1 2
|
mpbiri |
|- ( N = 0 -> N e. NN0 ) |
| 4 |
|
1nn |
|- 1 e. NN |
| 5 |
|
0mnnnnn0 |
|- ( 1 e. NN -> ( 0 - 1 ) e/ NN0 ) |
| 6 |
4 5
|
ax-mp |
|- ( 0 - 1 ) e/ NN0 |
| 7 |
|
oveq1 |
|- ( N = 0 -> ( N - 1 ) = ( 0 - 1 ) ) |
| 8 |
|
neleq1 |
|- ( ( N - 1 ) = ( 0 - 1 ) -> ( ( N - 1 ) e/ NN0 <-> ( 0 - 1 ) e/ NN0 ) ) |
| 9 |
7 8
|
syl |
|- ( N = 0 -> ( ( N - 1 ) e/ NN0 <-> ( 0 - 1 ) e/ NN0 ) ) |
| 10 |
6 9
|
mpbiri |
|- ( N = 0 -> ( N - 1 ) e/ NN0 ) |
| 11 |
|
df-nel |
|- ( ( N - 1 ) e/ NN0 <-> -. ( N - 1 ) e. NN0 ) |
| 12 |
10 11
|
sylib |
|- ( N = 0 -> -. ( N - 1 ) e. NN0 ) |
| 13 |
3 12
|
jca |
|- ( N = 0 -> ( N e. NN0 /\ -. ( N - 1 ) e. NN0 ) ) |
| 14 |
|
nn0z |
|- ( N e. NN0 -> N e. ZZ ) |
| 15 |
|
peano2zm |
|- ( N e. ZZ -> ( N - 1 ) e. ZZ ) |
| 16 |
14 15
|
syl |
|- ( N e. NN0 -> ( N - 1 ) e. ZZ ) |
| 17 |
|
elnn0z |
|- ( ( N - 1 ) e. NN0 <-> ( ( N - 1 ) e. ZZ /\ 0 <_ ( N - 1 ) ) ) |
| 18 |
17
|
notbii |
|- ( -. ( N - 1 ) e. NN0 <-> -. ( ( N - 1 ) e. ZZ /\ 0 <_ ( N - 1 ) ) ) |
| 19 |
18
|
biimpi |
|- ( -. ( N - 1 ) e. NN0 -> -. ( ( N - 1 ) e. ZZ /\ 0 <_ ( N - 1 ) ) ) |
| 20 |
|
annotanannot |
|- ( ( ( N - 1 ) e. ZZ /\ -. ( ( N - 1 ) e. ZZ /\ 0 <_ ( N - 1 ) ) ) <-> ( ( N - 1 ) e. ZZ /\ -. 0 <_ ( N - 1 ) ) ) |
| 21 |
20
|
simprbi |
|- ( ( ( N - 1 ) e. ZZ /\ -. ( ( N - 1 ) e. ZZ /\ 0 <_ ( N - 1 ) ) ) -> -. 0 <_ ( N - 1 ) ) |
| 22 |
16 19 21
|
syl2an |
|- ( ( N e. NN0 /\ -. ( N - 1 ) e. NN0 ) -> -. 0 <_ ( N - 1 ) ) |
| 23 |
|
zre |
|- ( ( N - 1 ) e. ZZ -> ( N - 1 ) e. RR ) |
| 24 |
14 15 23
|
3syl |
|- ( N e. NN0 -> ( N - 1 ) e. RR ) |
| 25 |
|
0red |
|- ( N e. NN0 -> 0 e. RR ) |
| 26 |
24 25
|
ltnled |
|- ( N e. NN0 -> ( ( N - 1 ) < 0 <-> -. 0 <_ ( N - 1 ) ) ) |
| 27 |
26
|
biimprd |
|- ( N e. NN0 -> ( -. 0 <_ ( N - 1 ) -> ( N - 1 ) < 0 ) ) |
| 28 |
27
|
adantr |
|- ( ( N e. NN0 /\ -. ( N - 1 ) e. NN0 ) -> ( -. 0 <_ ( N - 1 ) -> ( N - 1 ) < 0 ) ) |
| 29 |
22 28
|
mpd |
|- ( ( N e. NN0 /\ -. ( N - 1 ) e. NN0 ) -> ( N - 1 ) < 0 ) |
| 30 |
|
0z |
|- 0 e. ZZ |
| 31 |
|
zlem1lt |
|- ( ( N e. ZZ /\ 0 e. ZZ ) -> ( N <_ 0 <-> ( N - 1 ) < 0 ) ) |
| 32 |
14 30 31
|
sylancl |
|- ( N e. NN0 -> ( N <_ 0 <-> ( N - 1 ) < 0 ) ) |
| 33 |
32
|
biimprd |
|- ( N e. NN0 -> ( ( N - 1 ) < 0 -> N <_ 0 ) ) |
| 34 |
33
|
adantr |
|- ( ( N e. NN0 /\ -. ( N - 1 ) e. NN0 ) -> ( ( N - 1 ) < 0 -> N <_ 0 ) ) |
| 35 |
29 34
|
mpd |
|- ( ( N e. NN0 /\ -. ( N - 1 ) e. NN0 ) -> N <_ 0 ) |
| 36 |
|
nn0ge0 |
|- ( N e. NN0 -> 0 <_ N ) |
| 37 |
36
|
adantr |
|- ( ( N e. NN0 /\ -. ( N - 1 ) e. NN0 ) -> 0 <_ N ) |
| 38 |
|
nn0re |
|- ( N e. NN0 -> N e. RR ) |
| 39 |
38 25
|
letri3d |
|- ( N e. NN0 -> ( N = 0 <-> ( N <_ 0 /\ 0 <_ N ) ) ) |
| 40 |
39
|
biimprd |
|- ( N e. NN0 -> ( ( N <_ 0 /\ 0 <_ N ) -> N = 0 ) ) |
| 41 |
40
|
adantr |
|- ( ( N e. NN0 /\ -. ( N - 1 ) e. NN0 ) -> ( ( N <_ 0 /\ 0 <_ N ) -> N = 0 ) ) |
| 42 |
35 37 41
|
mp2and |
|- ( ( N e. NN0 /\ -. ( N - 1 ) e. NN0 ) -> N = 0 ) |
| 43 |
13 42
|
impbii |
|- ( N = 0 <-> ( N e. NN0 /\ -. ( N - 1 ) e. NN0 ) ) |