| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0re |
|- 0 e. RR |
| 2 |
|
nnel |
|- ( -. ( 0 - N ) e/ NN0 <-> ( 0 - N ) e. NN0 ) |
| 3 |
|
df-neg |
|- -u N = ( 0 - N ) |
| 4 |
3
|
eqcomi |
|- ( 0 - N ) = -u N |
| 5 |
4
|
eleq1i |
|- ( ( 0 - N ) e. NN0 <-> -u N e. NN0 ) |
| 6 |
|
nn0ge0 |
|- ( -u N e. NN0 -> 0 <_ -u N ) |
| 7 |
|
nnre |
|- ( N e. NN -> N e. RR ) |
| 8 |
7
|
le0neg1d |
|- ( N e. NN -> ( N <_ 0 <-> 0 <_ -u N ) ) |
| 9 |
|
nngt0 |
|- ( N e. NN -> 0 < N ) |
| 10 |
|
0red |
|- ( N e. NN -> 0 e. RR ) |
| 11 |
10 7
|
ltnled |
|- ( N e. NN -> ( 0 < N <-> -. N <_ 0 ) ) |
| 12 |
|
pm2.21 |
|- ( -. N <_ 0 -> ( N <_ 0 -> -. 0 e. RR ) ) |
| 13 |
11 12
|
biimtrdi |
|- ( N e. NN -> ( 0 < N -> ( N <_ 0 -> -. 0 e. RR ) ) ) |
| 14 |
9 13
|
mpd |
|- ( N e. NN -> ( N <_ 0 -> -. 0 e. RR ) ) |
| 15 |
8 14
|
sylbird |
|- ( N e. NN -> ( 0 <_ -u N -> -. 0 e. RR ) ) |
| 16 |
6 15
|
syl5 |
|- ( N e. NN -> ( -u N e. NN0 -> -. 0 e. RR ) ) |
| 17 |
5 16
|
biimtrid |
|- ( N e. NN -> ( ( 0 - N ) e. NN0 -> -. 0 e. RR ) ) |
| 18 |
2 17
|
biimtrid |
|- ( N e. NN -> ( -. ( 0 - N ) e/ NN0 -> -. 0 e. RR ) ) |
| 19 |
1 18
|
mt4i |
|- ( N e. NN -> ( 0 - N ) e/ NN0 ) |