Metamath Proof Explorer


Theorem nn0ltp1ne

Description: Nonnegative integer ordering relation. (Contributed by BTernaryTau, 24-Sep-2023)

Ref Expression
Assertion nn0ltp1ne A 0 B 0 A + 1 < B A < B B A + 1

Proof

Step Hyp Ref Expression
1 nn0z A 0 A
2 nn0z B 0 B
3 zltp1ne A B A + 1 < B A < B B A + 1
4 1 2 3 syl2an A 0 B 0 A + 1 < B A < B B A + 1