| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cycliswlk |
⊢ ( 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) |
| 2 |
|
wlkcl |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) |
| 3 |
1 2
|
syl |
⊢ ( 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) |
| 4 |
3
|
nn0red |
⊢ ( 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 → ( ♯ ‘ 𝐹 ) ∈ ℝ ) |
| 5 |
4
|
adantr |
⊢ ( ( 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 ∧ 𝐹 ≠ ∅ ) → ( ♯ ‘ 𝐹 ) ∈ ℝ ) |
| 6 |
2
|
nn0ge0d |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 0 ≤ ( ♯ ‘ 𝐹 ) ) |
| 7 |
1 6
|
syl |
⊢ ( 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 → 0 ≤ ( ♯ ‘ 𝐹 ) ) |
| 8 |
7
|
adantr |
⊢ ( ( 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 ∧ 𝐹 ≠ ∅ ) → 0 ≤ ( ♯ ‘ 𝐹 ) ) |
| 9 |
|
relwlk |
⊢ Rel ( Walks ‘ 𝐺 ) |
| 10 |
9
|
brrelex1i |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝐹 ∈ V ) |
| 11 |
|
hasheq0 |
⊢ ( 𝐹 ∈ V → ( ( ♯ ‘ 𝐹 ) = 0 ↔ 𝐹 = ∅ ) ) |
| 12 |
11
|
necon3bid |
⊢ ( 𝐹 ∈ V → ( ( ♯ ‘ 𝐹 ) ≠ 0 ↔ 𝐹 ≠ ∅ ) ) |
| 13 |
12
|
bicomd |
⊢ ( 𝐹 ∈ V → ( 𝐹 ≠ ∅ ↔ ( ♯ ‘ 𝐹 ) ≠ 0 ) ) |
| 14 |
1 10 13
|
3syl |
⊢ ( 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 → ( 𝐹 ≠ ∅ ↔ ( ♯ ‘ 𝐹 ) ≠ 0 ) ) |
| 15 |
14
|
biimpa |
⊢ ( ( 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 ∧ 𝐹 ≠ ∅ ) → ( ♯ ‘ 𝐹 ) ≠ 0 ) |
| 16 |
5 8 15
|
ne0gt0d |
⊢ ( ( 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 ∧ 𝐹 ≠ ∅ ) → 0 < ( ♯ ‘ 𝐹 ) ) |
| 17 |
16
|
3adant1 |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 ∧ 𝐹 ≠ ∅ ) → 0 < ( ♯ ‘ 𝐹 ) ) |
| 18 |
|
usgrumgr |
⊢ ( 𝐺 ∈ USGraph → 𝐺 ∈ UMGraph ) |
| 19 |
|
umgrn1cycl |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 ) → ( ♯ ‘ 𝐹 ) ≠ 1 ) |
| 20 |
18 19
|
sylan |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 ) → ( ♯ ‘ 𝐹 ) ≠ 1 ) |
| 21 |
20
|
3adant3 |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 ∧ 𝐹 ≠ ∅ ) → ( ♯ ‘ 𝐹 ) ≠ 1 ) |
| 22 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 23 |
|
nn0ltp1ne |
⊢ ( ( 0 ∈ ℕ0 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) → ( ( 0 + 1 ) < ( ♯ ‘ 𝐹 ) ↔ ( 0 < ( ♯ ‘ 𝐹 ) ∧ ( ♯ ‘ 𝐹 ) ≠ ( 0 + 1 ) ) ) ) |
| 24 |
22 3 23
|
sylancr |
⊢ ( 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 → ( ( 0 + 1 ) < ( ♯ ‘ 𝐹 ) ↔ ( 0 < ( ♯ ‘ 𝐹 ) ∧ ( ♯ ‘ 𝐹 ) ≠ ( 0 + 1 ) ) ) ) |
| 25 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
| 26 |
25
|
breq1i |
⊢ ( ( 0 + 1 ) < ( ♯ ‘ 𝐹 ) ↔ 1 < ( ♯ ‘ 𝐹 ) ) |
| 27 |
25
|
neeq2i |
⊢ ( ( ♯ ‘ 𝐹 ) ≠ ( 0 + 1 ) ↔ ( ♯ ‘ 𝐹 ) ≠ 1 ) |
| 28 |
27
|
anbi2i |
⊢ ( ( 0 < ( ♯ ‘ 𝐹 ) ∧ ( ♯ ‘ 𝐹 ) ≠ ( 0 + 1 ) ) ↔ ( 0 < ( ♯ ‘ 𝐹 ) ∧ ( ♯ ‘ 𝐹 ) ≠ 1 ) ) |
| 29 |
24 26 28
|
3bitr3g |
⊢ ( 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 → ( 1 < ( ♯ ‘ 𝐹 ) ↔ ( 0 < ( ♯ ‘ 𝐹 ) ∧ ( ♯ ‘ 𝐹 ) ≠ 1 ) ) ) |
| 30 |
29
|
3ad2ant2 |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 ∧ 𝐹 ≠ ∅ ) → ( 1 < ( ♯ ‘ 𝐹 ) ↔ ( 0 < ( ♯ ‘ 𝐹 ) ∧ ( ♯ ‘ 𝐹 ) ≠ 1 ) ) ) |
| 31 |
17 21 30
|
mpbir2and |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 ∧ 𝐹 ≠ ∅ ) → 1 < ( ♯ ‘ 𝐹 ) ) |
| 32 |
|
usgrn2cycl |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 ) → ( ♯ ‘ 𝐹 ) ≠ 2 ) |
| 33 |
32
|
3adant3 |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 ∧ 𝐹 ≠ ∅ ) → ( ♯ ‘ 𝐹 ) ≠ 2 ) |
| 34 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
| 35 |
34
|
breq1i |
⊢ ( 2 < ( ♯ ‘ 𝐹 ) ↔ ( 1 + 1 ) < ( ♯ ‘ 𝐹 ) ) |
| 36 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 37 |
|
nn0ltp1ne |
⊢ ( ( 1 ∈ ℕ0 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) → ( ( 1 + 1 ) < ( ♯ ‘ 𝐹 ) ↔ ( 1 < ( ♯ ‘ 𝐹 ) ∧ ( ♯ ‘ 𝐹 ) ≠ ( 1 + 1 ) ) ) ) |
| 38 |
36 3 37
|
sylancr |
⊢ ( 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 → ( ( 1 + 1 ) < ( ♯ ‘ 𝐹 ) ↔ ( 1 < ( ♯ ‘ 𝐹 ) ∧ ( ♯ ‘ 𝐹 ) ≠ ( 1 + 1 ) ) ) ) |
| 39 |
35 38
|
bitrid |
⊢ ( 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 → ( 2 < ( ♯ ‘ 𝐹 ) ↔ ( 1 < ( ♯ ‘ 𝐹 ) ∧ ( ♯ ‘ 𝐹 ) ≠ ( 1 + 1 ) ) ) ) |
| 40 |
39
|
3ad2ant2 |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 ∧ 𝐹 ≠ ∅ ) → ( 2 < ( ♯ ‘ 𝐹 ) ↔ ( 1 < ( ♯ ‘ 𝐹 ) ∧ ( ♯ ‘ 𝐹 ) ≠ ( 1 + 1 ) ) ) ) |
| 41 |
34
|
neeq2i |
⊢ ( ( ♯ ‘ 𝐹 ) ≠ 2 ↔ ( ♯ ‘ 𝐹 ) ≠ ( 1 + 1 ) ) |
| 42 |
41
|
anbi2i |
⊢ ( ( 1 < ( ♯ ‘ 𝐹 ) ∧ ( ♯ ‘ 𝐹 ) ≠ 2 ) ↔ ( 1 < ( ♯ ‘ 𝐹 ) ∧ ( ♯ ‘ 𝐹 ) ≠ ( 1 + 1 ) ) ) |
| 43 |
40 42
|
bitr4di |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 ∧ 𝐹 ≠ ∅ ) → ( 2 < ( ♯ ‘ 𝐹 ) ↔ ( 1 < ( ♯ ‘ 𝐹 ) ∧ ( ♯ ‘ 𝐹 ) ≠ 2 ) ) ) |
| 44 |
31 33 43
|
mpbir2and |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 ∧ 𝐹 ≠ ∅ ) → 2 < ( ♯ ‘ 𝐹 ) ) |