Metamath Proof Explorer


Theorem acycgr2v

Description: A simple graph with two vertices is an acyclic graph. (Contributed by BTernaryTau, 12-Oct-2023)

Ref Expression
Hypothesis acycgrv.1 V = Vtx G
Assertion acycgr2v G USGraph V = 2 G AcyclicGraph

Proof

Step Hyp Ref Expression
1 acycgrv.1 V = Vtx G
2 1 usgrcyclgt2v G USGraph f Cycles G p f 2 < V
3 2re 2
4 3 rexri 2 *
5 1 fvexi V V
6 hashxrcl V V V *
7 5 6 ax-mp V *
8 xrltne 2 * V * 2 < V V 2
9 4 7 8 mp3an12 2 < V V 2
10 9 neneqd 2 < V ¬ V = 2
11 2 10 syl G USGraph f Cycles G p f ¬ V = 2
12 11 3expib G USGraph f Cycles G p f ¬ V = 2
13 12 con2d G USGraph V = 2 ¬ f Cycles G p f
14 13 imp G USGraph V = 2 ¬ f Cycles G p f
15 14 nexdv G USGraph V = 2 ¬ p f Cycles G p f
16 15 nexdv G USGraph V = 2 ¬ f p f Cycles G p f
17 isacycgr G USGraph G AcyclicGraph ¬ f p f Cycles G p f
18 17 adantr G USGraph V = 2 G AcyclicGraph ¬ f p f Cycles G p f
19 16 18 mpbird G USGraph V = 2 G AcyclicGraph