Step |
Hyp |
Ref |
Expression |
1 |
|
acycgrv.1 |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
1
|
usgrcyclgt2v |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ 𝑓 ≠ ∅ ) → 2 < ( ♯ ‘ 𝑉 ) ) |
3 |
|
2re |
⊢ 2 ∈ ℝ |
4 |
3
|
rexri |
⊢ 2 ∈ ℝ* |
5 |
1
|
fvexi |
⊢ 𝑉 ∈ V |
6 |
|
hashxrcl |
⊢ ( 𝑉 ∈ V → ( ♯ ‘ 𝑉 ) ∈ ℝ* ) |
7 |
5 6
|
ax-mp |
⊢ ( ♯ ‘ 𝑉 ) ∈ ℝ* |
8 |
|
xrltne |
⊢ ( ( 2 ∈ ℝ* ∧ ( ♯ ‘ 𝑉 ) ∈ ℝ* ∧ 2 < ( ♯ ‘ 𝑉 ) ) → ( ♯ ‘ 𝑉 ) ≠ 2 ) |
9 |
4 7 8
|
mp3an12 |
⊢ ( 2 < ( ♯ ‘ 𝑉 ) → ( ♯ ‘ 𝑉 ) ≠ 2 ) |
10 |
9
|
neneqd |
⊢ ( 2 < ( ♯ ‘ 𝑉 ) → ¬ ( ♯ ‘ 𝑉 ) = 2 ) |
11 |
2 10
|
syl |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ 𝑓 ≠ ∅ ) → ¬ ( ♯ ‘ 𝑉 ) = 2 ) |
12 |
11
|
3expib |
⊢ ( 𝐺 ∈ USGraph → ( ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ 𝑓 ≠ ∅ ) → ¬ ( ♯ ‘ 𝑉 ) = 2 ) ) |
13 |
12
|
con2d |
⊢ ( 𝐺 ∈ USGraph → ( ( ♯ ‘ 𝑉 ) = 2 → ¬ ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ 𝑓 ≠ ∅ ) ) ) |
14 |
13
|
imp |
⊢ ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝑉 ) = 2 ) → ¬ ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ 𝑓 ≠ ∅ ) ) |
15 |
14
|
nexdv |
⊢ ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝑉 ) = 2 ) → ¬ ∃ 𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ 𝑓 ≠ ∅ ) ) |
16 |
15
|
nexdv |
⊢ ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝑉 ) = 2 ) → ¬ ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ 𝑓 ≠ ∅ ) ) |
17 |
|
isacycgr |
⊢ ( 𝐺 ∈ USGraph → ( 𝐺 ∈ AcyclicGraph ↔ ¬ ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ 𝑓 ≠ ∅ ) ) ) |
18 |
17
|
adantr |
⊢ ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝑉 ) = 2 ) → ( 𝐺 ∈ AcyclicGraph ↔ ¬ ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ 𝑓 ≠ ∅ ) ) ) |
19 |
16 18
|
mpbird |
⊢ ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝑉 ) = 2 ) → 𝐺 ∈ AcyclicGraph ) |