Metamath Proof Explorer


Definition df-atan

Description: Define the arctangent function. See also remarks for df-asin . Unlike arcsin and arccos , this function is not defined everywhere, because tan ( z ) =/= +-i for all z e. CC . For all other z , there is a formula for arctan ( z ) in terms of log , and we take that as the definition. Branch points are at +- i ; branch cuts are on the pure imaginary axis not between -ui and i , which is to say { z e. CC | ( _i x. z ) e. ( -oo , -u 1 ) u. ( 1 , +oo ) } . (Contributed by Mario Carneiro, 31-Mar-2015)

Ref Expression
Assertion df-atan
|- arctan = ( x e. ( CC \ { -u _i , _i } ) |-> ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. x ) ) ) - ( log ` ( 1 + ( _i x. x ) ) ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 catan
 |-  arctan
1 vx
 |-  x
2 cc
 |-  CC
3 ci
 |-  _i
4 3 cneg
 |-  -u _i
5 4 3 cpr
 |-  { -u _i , _i }
6 2 5 cdif
 |-  ( CC \ { -u _i , _i } )
7 cdiv
 |-  /
8 c2
 |-  2
9 3 8 7 co
 |-  ( _i / 2 )
10 cmul
 |-  x.
11 clog
 |-  log
12 c1
 |-  1
13 cmin
 |-  -
14 1 cv
 |-  x
15 3 14 10 co
 |-  ( _i x. x )
16 12 15 13 co
 |-  ( 1 - ( _i x. x ) )
17 16 11 cfv
 |-  ( log ` ( 1 - ( _i x. x ) ) )
18 caddc
 |-  +
19 12 15 18 co
 |-  ( 1 + ( _i x. x ) )
20 19 11 cfv
 |-  ( log ` ( 1 + ( _i x. x ) ) )
21 17 20 13 co
 |-  ( ( log ` ( 1 - ( _i x. x ) ) ) - ( log ` ( 1 + ( _i x. x ) ) ) )
22 9 21 10 co
 |-  ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. x ) ) ) - ( log ` ( 1 + ( _i x. x ) ) ) ) )
23 1 6 22 cmpt
 |-  ( x e. ( CC \ { -u _i , _i } ) |-> ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. x ) ) ) - ( log ` ( 1 + ( _i x. x ) ) ) ) ) )
24 0 23 wceq
 |-  arctan = ( x e. ( CC \ { -u _i , _i } ) |-> ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. x ) ) ) - ( log ` ( 1 + ( _i x. x ) ) ) ) ) )