Metamath Proof Explorer


Definition df-atan

Description: Define the arctangent function. See also remarks for df-asin . Unlike arcsin and arccos , this function is not defined everywhere, because tan ( z ) =/= +-i for all z e. CC . For all other z , there is a formula for arctan ( z ) in terms of log , and we take that as the definition. Branch points are at +- i ; branch cuts are on the pure imaginary axis not between -ui and i , which is to say { z e. CC | ( _i x. z ) e. ( -oo , -u 1 ) u. ( 1 , +oo ) } . (Contributed by Mario Carneiro, 31-Mar-2015)

Ref Expression
Assertion df-atan arctan=xiii2log1ixlog1+ix

Detailed syntax breakdown

Step Hyp Ref Expression
0 catan classarctan
1 vx setvarx
2 cc class
3 ci classi
4 3 cneg classi
5 4 3 cpr classii
6 2 5 cdif classii
7 cdiv class÷
8 c2 class2
9 3 8 7 co classi2
10 cmul class×
11 clog classlog
12 c1 class1
13 cmin class
14 1 cv setvarx
15 3 14 10 co classix
16 12 15 13 co class1ix
17 16 11 cfv classlog1ix
18 caddc class+
19 12 15 18 co class1+ix
20 19 11 cfv classlog1+ix
21 17 20 13 co classlog1ixlog1+ix
22 9 21 10 co classi2log1ixlog1+ix
23 1 6 22 cmpt classxiii2log1ixlog1+ix
24 0 23 wceq wffarctan=xiii2log1ixlog1+ix