Metamath Proof Explorer


Definition df-ats

Description: Define the class of poset atoms. (Contributed by NM, 18-Sep-2011)

Ref Expression
Assertion df-ats
|- Atoms = ( p e. _V |-> { a e. ( Base ` p ) | ( 0. ` p ) ( 

Detailed syntax breakdown

Step Hyp Ref Expression
0 catm
 |-  Atoms
1 vp
 |-  p
2 cvv
 |-  _V
3 va
 |-  a
4 cbs
 |-  Base
5 1 cv
 |-  p
6 5 4 cfv
 |-  ( Base ` p )
7 cp0
 |-  0.
8 5 7 cfv
 |-  ( 0. ` p )
9 ccvr
 |-  
10 5 9 cfv
 |-  ( 
11 3 cv
 |-  a
12 8 11 10 wbr
 |-  ( 0. ` p ) ( 
13 12 3 6 crab
 |-  { a e. ( Base ` p ) | ( 0. ` p ) ( 
14 1 2 13 cmpt
 |-  ( p e. _V |-> { a e. ( Base ` p ) | ( 0. ` p ) ( 
15 0 14 wceq
 |-  Atoms = ( p e. _V |-> { a e. ( Base ` p ) | ( 0. ` p ) (