Description: Definition of the extended natural numbers. (Contributed by BJ, 28-Jul-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-bj-nnbar | |- NNbar = ( NN0 u. { pinfty } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cnnbar | |- NNbar |
|
| 1 | cn0 | |- NN0 |
|
| 2 | cpinfty | |- pinfty |
|
| 3 | 2 | csn | |- { pinfty } |
| 4 | 1 3 | cun | |- ( NN0 u. { pinfty } ) |
| 5 | 0 4 | wceq | |- NNbar = ( NN0 u. { pinfty } ) |