Description: Definition of the extended natural numbers. (Contributed by BJ, 28-Jul-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | df-bj-nnbar | |- NNbar = ( NN0 u. { pinfty } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cnnbar | |- NNbar |
|
1 | cn0 | |- NN0 |
|
2 | cpinfty | |- pinfty |
|
3 | 2 | csn | |- { pinfty } |
4 | 1 3 | cun | |- ( NN0 u. { pinfty } ) |
5 | 0 4 | wceq | |- NNbar = ( NN0 u. { pinfty } ) |