Metamath Proof Explorer


Definition df-bj-nnbar

Description: Definition of the extended natural numbers. (Contributed by BJ, 28-Jul-2023)

Ref Expression
Assertion df-bj-nnbar ℕ̅ = ( ℕ0 ∪ { +∞ } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cnnbar ℕ̅
1 cn0 0
2 cpinfty +∞
3 2 csn { +∞ }
4 1 3 cun ( ℕ0 ∪ { +∞ } )
5 0 4 wceq ℕ̅ = ( ℕ0 ∪ { +∞ } )