Metamath Proof Explorer


Definition df-bj-unc

Description: Define uncurrying. See also df-unc . (Contributed by BJ, 11-Apr-2020)

Ref Expression
Assertion df-bj-unc
|- uncurry_ = ( x e. _V , y e. _V , z e. _V |-> ( f e. ( x -Set-> ( y -Set-> z ) ) |-> ( a e. x , b e. y |-> ( ( f ` a ) ` b ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cunc-
 |-  uncurry_
1 vx
 |-  x
2 cvv
 |-  _V
3 vy
 |-  y
4 vz
 |-  z
5 vf
 |-  f
6 1 cv
 |-  x
7 csethom
 |-  -Set->
8 3 cv
 |-  y
9 4 cv
 |-  z
10 8 9 7 co
 |-  ( y -Set-> z )
11 6 10 7 co
 |-  ( x -Set-> ( y -Set-> z ) )
12 va
 |-  a
13 vb
 |-  b
14 5 cv
 |-  f
15 12 cv
 |-  a
16 15 14 cfv
 |-  ( f ` a )
17 13 cv
 |-  b
18 17 16 cfv
 |-  ( ( f ` a ) ` b )
19 12 13 6 8 18 cmpo
 |-  ( a e. x , b e. y |-> ( ( f ` a ) ` b ) )
20 5 11 19 cmpt
 |-  ( f e. ( x -Set-> ( y -Set-> z ) ) |-> ( a e. x , b e. y |-> ( ( f ` a ) ` b ) ) )
21 1 3 4 2 2 2 20 cmpt3
 |-  ( x e. _V , y e. _V , z e. _V |-> ( f e. ( x -Set-> ( y -Set-> z ) ) |-> ( a e. x , b e. y |-> ( ( f ` a ) ` b ) ) ) )
22 0 21 wceq
 |-  uncurry_ = ( x e. _V , y e. _V , z e. _V |-> ( f e. ( x -Set-> ( y -Set-> z ) ) |-> ( a e. x , b e. y |-> ( ( f ` a ) ` b ) ) ) )