Step |
Hyp |
Ref |
Expression |
0 |
|
cunc- |
|- uncurry_ |
1 |
|
vx |
|- x |
2 |
|
cvv |
|- _V |
3 |
|
vy |
|- y |
4 |
|
vz |
|- z |
5 |
|
vf |
|- f |
6 |
1
|
cv |
|- x |
7 |
|
csethom |
|- -Set-> |
8 |
3
|
cv |
|- y |
9 |
4
|
cv |
|- z |
10 |
8 9 7
|
co |
|- ( y -Set-> z ) |
11 |
6 10 7
|
co |
|- ( x -Set-> ( y -Set-> z ) ) |
12 |
|
va |
|- a |
13 |
|
vb |
|- b |
14 |
5
|
cv |
|- f |
15 |
12
|
cv |
|- a |
16 |
15 14
|
cfv |
|- ( f ` a ) |
17 |
13
|
cv |
|- b |
18 |
17 16
|
cfv |
|- ( ( f ` a ) ` b ) |
19 |
12 13 6 8 18
|
cmpo |
|- ( a e. x , b e. y |-> ( ( f ` a ) ` b ) ) |
20 |
5 11 19
|
cmpt |
|- ( f e. ( x -Set-> ( y -Set-> z ) ) |-> ( a e. x , b e. y |-> ( ( f ` a ) ` b ) ) ) |
21 |
1 3 4 2 2 2 20
|
cmpt3 |
|- ( x e. _V , y e. _V , z e. _V |-> ( f e. ( x -Set-> ( y -Set-> z ) ) |-> ( a e. x , b e. y |-> ( ( f ` a ) ` b ) ) ) ) |
22 |
0 21
|
wceq |
|- uncurry_ = ( x e. _V , y e. _V , z e. _V |-> ( f e. ( x -Set-> ( y -Set-> z ) ) |-> ( a e. x , b e. y |-> ( ( f ` a ) ` b ) ) ) ) |