| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cunc- |
|- uncurry_ |
| 1 |
|
vx |
|- x |
| 2 |
|
cvv |
|- _V |
| 3 |
|
vy |
|- y |
| 4 |
|
vz |
|- z |
| 5 |
|
vf |
|- f |
| 6 |
1
|
cv |
|- x |
| 7 |
|
csethom |
|- -Set-> |
| 8 |
3
|
cv |
|- y |
| 9 |
4
|
cv |
|- z |
| 10 |
8 9 7
|
co |
|- ( y -Set-> z ) |
| 11 |
6 10 7
|
co |
|- ( x -Set-> ( y -Set-> z ) ) |
| 12 |
|
va |
|- a |
| 13 |
|
vb |
|- b |
| 14 |
5
|
cv |
|- f |
| 15 |
12
|
cv |
|- a |
| 16 |
15 14
|
cfv |
|- ( f ` a ) |
| 17 |
13
|
cv |
|- b |
| 18 |
17 16
|
cfv |
|- ( ( f ` a ) ` b ) |
| 19 |
12 13 6 8 18
|
cmpo |
|- ( a e. x , b e. y |-> ( ( f ` a ) ` b ) ) |
| 20 |
5 11 19
|
cmpt |
|- ( f e. ( x -Set-> ( y -Set-> z ) ) |-> ( a e. x , b e. y |-> ( ( f ` a ) ` b ) ) ) |
| 21 |
1 3 4 2 2 2 20
|
cmpt3 |
|- ( x e. _V , y e. _V , z e. _V |-> ( f e. ( x -Set-> ( y -Set-> z ) ) |-> ( a e. x , b e. y |-> ( ( f ` a ) ` b ) ) ) ) |
| 22 |
0 21
|
wceq |
|- uncurry_ = ( x e. _V , y e. _V , z e. _V |-> ( f e. ( x -Set-> ( y -Set-> z ) ) |-> ( a e. x , b e. y |-> ( ( f ` a ) ` b ) ) ) ) |