Step |
Hyp |
Ref |
Expression |
0 |
|
cunc- |
⊢ uncurry_ |
1 |
|
vx |
⊢ 𝑥 |
2 |
|
cvv |
⊢ V |
3 |
|
vy |
⊢ 𝑦 |
4 |
|
vz |
⊢ 𝑧 |
5 |
|
vf |
⊢ 𝑓 |
6 |
1
|
cv |
⊢ 𝑥 |
7 |
|
csethom |
⊢ Set⟶ |
8 |
3
|
cv |
⊢ 𝑦 |
9 |
4
|
cv |
⊢ 𝑧 |
10 |
8 9 7
|
co |
⊢ ( 𝑦 Set⟶ 𝑧 ) |
11 |
6 10 7
|
co |
⊢ ( 𝑥 Set⟶ ( 𝑦 Set⟶ 𝑧 ) ) |
12 |
|
va |
⊢ 𝑎 |
13 |
|
vb |
⊢ 𝑏 |
14 |
5
|
cv |
⊢ 𝑓 |
15 |
12
|
cv |
⊢ 𝑎 |
16 |
15 14
|
cfv |
⊢ ( 𝑓 ‘ 𝑎 ) |
17 |
13
|
cv |
⊢ 𝑏 |
18 |
17 16
|
cfv |
⊢ ( ( 𝑓 ‘ 𝑎 ) ‘ 𝑏 ) |
19 |
12 13 6 8 18
|
cmpo |
⊢ ( 𝑎 ∈ 𝑥 , 𝑏 ∈ 𝑦 ↦ ( ( 𝑓 ‘ 𝑎 ) ‘ 𝑏 ) ) |
20 |
5 11 19
|
cmpt |
⊢ ( 𝑓 ∈ ( 𝑥 Set⟶ ( 𝑦 Set⟶ 𝑧 ) ) ↦ ( 𝑎 ∈ 𝑥 , 𝑏 ∈ 𝑦 ↦ ( ( 𝑓 ‘ 𝑎 ) ‘ 𝑏 ) ) ) |
21 |
1 3 4 2 2 2 20
|
cmpt3 |
⊢ ( 𝑥 ∈ V , 𝑦 ∈ V , 𝑧 ∈ V ↦ ( 𝑓 ∈ ( 𝑥 Set⟶ ( 𝑦 Set⟶ 𝑧 ) ) ↦ ( 𝑎 ∈ 𝑥 , 𝑏 ∈ 𝑦 ↦ ( ( 𝑓 ‘ 𝑎 ) ‘ 𝑏 ) ) ) ) |
22 |
0 21
|
wceq |
⊢ uncurry_ = ( 𝑥 ∈ V , 𝑦 ∈ V , 𝑧 ∈ V ↦ ( 𝑓 ∈ ( 𝑥 Set⟶ ( 𝑦 Set⟶ 𝑧 ) ) ↦ ( 𝑎 ∈ 𝑥 , 𝑏 ∈ 𝑦 ↦ ( ( 𝑓 ‘ 𝑎 ) ‘ 𝑏 ) ) ) ) |