Metamath Proof Explorer


Definition df-bj-unc

Description: Define uncurrying. See also df-unc . (Contributed by BJ, 11-Apr-2020)

Ref Expression
Assertion df-bj-unc uncurry_ = ( 𝑥 ∈ V , 𝑦 ∈ V , 𝑧 ∈ V ↦ ( 𝑓 ∈ ( 𝑥 Set⟶ ( 𝑦 Set𝑧 ) ) ↦ ( 𝑎𝑥 , 𝑏𝑦 ↦ ( ( 𝑓𝑎 ) ‘ 𝑏 ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cunc- uncurry_
1 vx 𝑥
2 cvv V
3 vy 𝑦
4 vz 𝑧
5 vf 𝑓
6 1 cv 𝑥
7 csethom Set
8 3 cv 𝑦
9 4 cv 𝑧
10 8 9 7 co ( 𝑦 Set𝑧 )
11 6 10 7 co ( 𝑥 Set⟶ ( 𝑦 Set𝑧 ) )
12 va 𝑎
13 vb 𝑏
14 5 cv 𝑓
15 12 cv 𝑎
16 15 14 cfv ( 𝑓𝑎 )
17 13 cv 𝑏
18 17 16 cfv ( ( 𝑓𝑎 ) ‘ 𝑏 )
19 12 13 6 8 18 cmpo ( 𝑎𝑥 , 𝑏𝑦 ↦ ( ( 𝑓𝑎 ) ‘ 𝑏 ) )
20 5 11 19 cmpt ( 𝑓 ∈ ( 𝑥 Set⟶ ( 𝑦 Set𝑧 ) ) ↦ ( 𝑎𝑥 , 𝑏𝑦 ↦ ( ( 𝑓𝑎 ) ‘ 𝑏 ) ) )
21 1 3 4 2 2 2 20 cmpt3 ( 𝑥 ∈ V , 𝑦 ∈ V , 𝑧 ∈ V ↦ ( 𝑓 ∈ ( 𝑥 Set⟶ ( 𝑦 Set𝑧 ) ) ↦ ( 𝑎𝑥 , 𝑏𝑦 ↦ ( ( 𝑓𝑎 ) ‘ 𝑏 ) ) ) )
22 0 21 wceq uncurry_ = ( 𝑥 ∈ V , 𝑦 ∈ V , 𝑧 ∈ V ↦ ( 𝑓 ∈ ( 𝑥 Set⟶ ( 𝑦 Set𝑧 ) ) ↦ ( 𝑎𝑥 , 𝑏𝑦 ↦ ( ( 𝑓𝑎 ) ‘ 𝑏 ) ) ) )