| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cunc- |
⊢ uncurry_ |
| 1 |
|
vx |
⊢ 𝑥 |
| 2 |
|
cvv |
⊢ V |
| 3 |
|
vy |
⊢ 𝑦 |
| 4 |
|
vz |
⊢ 𝑧 |
| 5 |
|
vf |
⊢ 𝑓 |
| 6 |
1
|
cv |
⊢ 𝑥 |
| 7 |
|
csethom |
⊢ Set⟶ |
| 8 |
3
|
cv |
⊢ 𝑦 |
| 9 |
4
|
cv |
⊢ 𝑧 |
| 10 |
8 9 7
|
co |
⊢ ( 𝑦 Set⟶ 𝑧 ) |
| 11 |
6 10 7
|
co |
⊢ ( 𝑥 Set⟶ ( 𝑦 Set⟶ 𝑧 ) ) |
| 12 |
|
va |
⊢ 𝑎 |
| 13 |
|
vb |
⊢ 𝑏 |
| 14 |
5
|
cv |
⊢ 𝑓 |
| 15 |
12
|
cv |
⊢ 𝑎 |
| 16 |
15 14
|
cfv |
⊢ ( 𝑓 ‘ 𝑎 ) |
| 17 |
13
|
cv |
⊢ 𝑏 |
| 18 |
17 16
|
cfv |
⊢ ( ( 𝑓 ‘ 𝑎 ) ‘ 𝑏 ) |
| 19 |
12 13 6 8 18
|
cmpo |
⊢ ( 𝑎 ∈ 𝑥 , 𝑏 ∈ 𝑦 ↦ ( ( 𝑓 ‘ 𝑎 ) ‘ 𝑏 ) ) |
| 20 |
5 11 19
|
cmpt |
⊢ ( 𝑓 ∈ ( 𝑥 Set⟶ ( 𝑦 Set⟶ 𝑧 ) ) ↦ ( 𝑎 ∈ 𝑥 , 𝑏 ∈ 𝑦 ↦ ( ( 𝑓 ‘ 𝑎 ) ‘ 𝑏 ) ) ) |
| 21 |
1 3 4 2 2 2 20
|
cmpt3 |
⊢ ( 𝑥 ∈ V , 𝑦 ∈ V , 𝑧 ∈ V ↦ ( 𝑓 ∈ ( 𝑥 Set⟶ ( 𝑦 Set⟶ 𝑧 ) ) ↦ ( 𝑎 ∈ 𝑥 , 𝑏 ∈ 𝑦 ↦ ( ( 𝑓 ‘ 𝑎 ) ‘ 𝑏 ) ) ) ) |
| 22 |
0 21
|
wceq |
⊢ uncurry_ = ( 𝑥 ∈ V , 𝑦 ∈ V , 𝑧 ∈ V ↦ ( 𝑓 ∈ ( 𝑥 Set⟶ ( 𝑦 Set⟶ 𝑧 ) ) ↦ ( 𝑎 ∈ 𝑥 , 𝑏 ∈ 𝑦 ↦ ( ( 𝑓 ‘ 𝑎 ) ‘ 𝑏 ) ) ) ) |