Metamath Proof Explorer


Definition df-bj-zzbar

Description: Definition of the extended integers. (Contributed by BJ, 28-Jul-2023)

Ref Expression
Assertion df-bj-zzbar
|- ZZbar = ( ZZ u. { minfty , pinfty } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 czzbar
 |-  ZZbar
1 cz
 |-  ZZ
2 cminfty
 |-  minfty
3 cpinfty
 |-  pinfty
4 2 3 cpr
 |-  { minfty , pinfty }
5 1 4 cun
 |-  ( ZZ u. { minfty , pinfty } )
6 0 5 wceq
 |-  ZZbar = ( ZZ u. { minfty , pinfty } )