Metamath Proof Explorer


Definition df-bj-zzbar

Description: Definition of the extended integers. (Contributed by BJ, 28-Jul-2023)

Ref Expression
Assertion df-bj-zzbar ℤ̅ = ( ℤ ∪ { -∞ , +∞ } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 czzbar ℤ̅
1 cz
2 cminfty -∞
3 cpinfty +∞
4 2 3 cpr { -∞ , +∞ }
5 1 4 cun ( ℤ ∪ { -∞ , +∞ } )
6 0 5 wceq ℤ̅ = ( ℤ ∪ { -∞ , +∞ } )