Description: Define the metric space ball function. See blval for its value. (Contributed by NM, 30-Aug-2006) (Revised by Thierry Arnoux, 11-Feb-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | df-bl | |- ball = ( d e. _V |-> ( x e. dom dom d , z e. RR* |-> { y e. dom dom d | ( x d y ) < z } ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cbl | |- ball |
|
1 | vd | |- d |
|
2 | cvv | |- _V |
|
3 | vx | |- x |
|
4 | 1 | cv | |- d |
5 | 4 | cdm | |- dom d |
6 | 5 | cdm | |- dom dom d |
7 | vz | |- z |
|
8 | cxr | |- RR* |
|
9 | vy | |- y |
|
10 | 3 | cv | |- x |
11 | 9 | cv | |- y |
12 | 10 11 4 | co | |- ( x d y ) |
13 | clt | |- < |
|
14 | 7 | cv | |- z |
15 | 12 14 13 | wbr | |- ( x d y ) < z |
16 | 15 9 6 | crab | |- { y e. dom dom d | ( x d y ) < z } |
17 | 3 7 6 8 16 | cmpo | |- ( x e. dom dom d , z e. RR* |-> { y e. dom dom d | ( x d y ) < z } ) |
18 | 1 2 17 | cmpt | |- ( d e. _V |-> ( x e. dom dom d , z e. RR* |-> { y e. dom dom d | ( x d y ) < z } ) ) |
19 | 0 18 | wceq | |- ball = ( d e. _V |-> ( x e. dom dom d , z e. RR* |-> { y e. dom dom d | ( x d y ) < z } ) ) |