Metamath Proof Explorer


Definition df-bl

Description: Define the metric space ball function. See blval for its value. (Contributed by NM, 30-Aug-2006) (Revised by Thierry Arnoux, 11-Feb-2018)

Ref Expression
Assertion df-bl
|- ball = ( d e. _V |-> ( x e. dom dom d , z e. RR* |-> { y e. dom dom d | ( x d y ) < z } ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cbl
 |-  ball
1 vd
 |-  d
2 cvv
 |-  _V
3 vx
 |-  x
4 1 cv
 |-  d
5 4 cdm
 |-  dom d
6 5 cdm
 |-  dom dom d
7 vz
 |-  z
8 cxr
 |-  RR*
9 vy
 |-  y
10 3 cv
 |-  x
11 9 cv
 |-  y
12 10 11 4 co
 |-  ( x d y )
13 clt
 |-  <
14 7 cv
 |-  z
15 12 14 13 wbr
 |-  ( x d y ) < z
16 15 9 6 crab
 |-  { y e. dom dom d | ( x d y ) < z }
17 3 7 6 8 16 cmpo
 |-  ( x e. dom dom d , z e. RR* |-> { y e. dom dom d | ( x d y ) < z } )
18 1 2 17 cmpt
 |-  ( d e. _V |-> ( x e. dom dom d , z e. RR* |-> { y e. dom dom d | ( x d y ) < z } ) )
19 0 18 wceq
 |-  ball = ( d e. _V |-> ( x e. dom dom d , z e. RR* |-> { y e. dom dom d | ( x d y ) < z } ) )