| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cbp |
|- BernPoly |
| 1 |
|
vm |
|- m |
| 2 |
|
cn0 |
|- NN0 |
| 3 |
|
vx |
|- x |
| 4 |
|
cc |
|- CC |
| 5 |
|
clt |
|- < |
| 6 |
|
vg |
|- g |
| 7 |
|
cvv |
|- _V |
| 8 |
|
chash |
|- # |
| 9 |
6
|
cv |
|- g |
| 10 |
9
|
cdm |
|- dom g |
| 11 |
10 8
|
cfv |
|- ( # ` dom g ) |
| 12 |
|
vn |
|- n |
| 13 |
3
|
cv |
|- x |
| 14 |
|
cexp |
|- ^ |
| 15 |
12
|
cv |
|- n |
| 16 |
13 15 14
|
co |
|- ( x ^ n ) |
| 17 |
|
cmin |
|- - |
| 18 |
|
vk |
|- k |
| 19 |
|
cbc |
|- _C |
| 20 |
18
|
cv |
|- k |
| 21 |
15 20 19
|
co |
|- ( n _C k ) |
| 22 |
|
cmul |
|- x. |
| 23 |
20 9
|
cfv |
|- ( g ` k ) |
| 24 |
|
cdiv |
|- / |
| 25 |
15 20 17
|
co |
|- ( n - k ) |
| 26 |
|
caddc |
|- + |
| 27 |
|
c1 |
|- 1 |
| 28 |
25 27 26
|
co |
|- ( ( n - k ) + 1 ) |
| 29 |
23 28 24
|
co |
|- ( ( g ` k ) / ( ( n - k ) + 1 ) ) |
| 30 |
21 29 22
|
co |
|- ( ( n _C k ) x. ( ( g ` k ) / ( ( n - k ) + 1 ) ) ) |
| 31 |
10 30 18
|
csu |
|- sum_ k e. dom g ( ( n _C k ) x. ( ( g ` k ) / ( ( n - k ) + 1 ) ) ) |
| 32 |
16 31 17
|
co |
|- ( ( x ^ n ) - sum_ k e. dom g ( ( n _C k ) x. ( ( g ` k ) / ( ( n - k ) + 1 ) ) ) ) |
| 33 |
12 11 32
|
csb |
|- [_ ( # ` dom g ) / n ]_ ( ( x ^ n ) - sum_ k e. dom g ( ( n _C k ) x. ( ( g ` k ) / ( ( n - k ) + 1 ) ) ) ) |
| 34 |
6 7 33
|
cmpt |
|- ( g e. _V |-> [_ ( # ` dom g ) / n ]_ ( ( x ^ n ) - sum_ k e. dom g ( ( n _C k ) x. ( ( g ` k ) / ( ( n - k ) + 1 ) ) ) ) ) |
| 35 |
2 5 34
|
cwrecs |
|- wrecs ( < , NN0 , ( g e. _V |-> [_ ( # ` dom g ) / n ]_ ( ( x ^ n ) - sum_ k e. dom g ( ( n _C k ) x. ( ( g ` k ) / ( ( n - k ) + 1 ) ) ) ) ) ) |
| 36 |
1
|
cv |
|- m |
| 37 |
36 35
|
cfv |
|- ( wrecs ( < , NN0 , ( g e. _V |-> [_ ( # ` dom g ) / n ]_ ( ( x ^ n ) - sum_ k e. dom g ( ( n _C k ) x. ( ( g ` k ) / ( ( n - k ) + 1 ) ) ) ) ) ) ` m ) |
| 38 |
1 3 2 4 37
|
cmpo |
|- ( m e. NN0 , x e. CC |-> ( wrecs ( < , NN0 , ( g e. _V |-> [_ ( # ` dom g ) / n ]_ ( ( x ^ n ) - sum_ k e. dom g ( ( n _C k ) x. ( ( g ` k ) / ( ( n - k ) + 1 ) ) ) ) ) ) ` m ) ) |
| 39 |
0 38
|
wceq |
|- BernPoly = ( m e. NN0 , x e. CC |-> ( wrecs ( < , NN0 , ( g e. _V |-> [_ ( # ` dom g ) / n ]_ ( ( x ^ n ) - sum_ k e. dom g ( ( n _C k ) x. ( ( g ` k ) / ( ( n - k ) + 1 ) ) ) ) ) ) ` m ) ) |