| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cbp |  |-  BernPoly | 
						
							| 1 |  | vm |  |-  m | 
						
							| 2 |  | cn0 |  |-  NN0 | 
						
							| 3 |  | vx |  |-  x | 
						
							| 4 |  | cc |  |-  CC | 
						
							| 5 |  | clt |  |-  < | 
						
							| 6 |  | vg |  |-  g | 
						
							| 7 |  | cvv |  |-  _V | 
						
							| 8 |  | chash |  |-  # | 
						
							| 9 | 6 | cv |  |-  g | 
						
							| 10 | 9 | cdm |  |-  dom g | 
						
							| 11 | 10 8 | cfv |  |-  ( # ` dom g ) | 
						
							| 12 |  | vn |  |-  n | 
						
							| 13 | 3 | cv |  |-  x | 
						
							| 14 |  | cexp |  |-  ^ | 
						
							| 15 | 12 | cv |  |-  n | 
						
							| 16 | 13 15 14 | co |  |-  ( x ^ n ) | 
						
							| 17 |  | cmin |  |-  - | 
						
							| 18 |  | vk |  |-  k | 
						
							| 19 |  | cbc |  |-  _C | 
						
							| 20 | 18 | cv |  |-  k | 
						
							| 21 | 15 20 19 | co |  |-  ( n _C k ) | 
						
							| 22 |  | cmul |  |-  x. | 
						
							| 23 | 20 9 | cfv |  |-  ( g ` k ) | 
						
							| 24 |  | cdiv |  |-  / | 
						
							| 25 | 15 20 17 | co |  |-  ( n - k ) | 
						
							| 26 |  | caddc |  |-  + | 
						
							| 27 |  | c1 |  |-  1 | 
						
							| 28 | 25 27 26 | co |  |-  ( ( n - k ) + 1 ) | 
						
							| 29 | 23 28 24 | co |  |-  ( ( g ` k ) / ( ( n - k ) + 1 ) ) | 
						
							| 30 | 21 29 22 | co |  |-  ( ( n _C k ) x. ( ( g ` k ) / ( ( n - k ) + 1 ) ) ) | 
						
							| 31 | 10 30 18 | csu |  |-  sum_ k e. dom g ( ( n _C k ) x. ( ( g ` k ) / ( ( n - k ) + 1 ) ) ) | 
						
							| 32 | 16 31 17 | co |  |-  ( ( x ^ n ) - sum_ k e. dom g ( ( n _C k ) x. ( ( g ` k ) / ( ( n - k ) + 1 ) ) ) ) | 
						
							| 33 | 12 11 32 | csb |  |-  [_ ( # ` dom g ) / n ]_ ( ( x ^ n ) - sum_ k e. dom g ( ( n _C k ) x. ( ( g ` k ) / ( ( n - k ) + 1 ) ) ) ) | 
						
							| 34 | 6 7 33 | cmpt |  |-  ( g e. _V |-> [_ ( # ` dom g ) / n ]_ ( ( x ^ n ) - sum_ k e. dom g ( ( n _C k ) x. ( ( g ` k ) / ( ( n - k ) + 1 ) ) ) ) ) | 
						
							| 35 | 2 5 34 | cwrecs |  |-  wrecs ( < , NN0 , ( g e. _V |-> [_ ( # ` dom g ) / n ]_ ( ( x ^ n ) - sum_ k e. dom g ( ( n _C k ) x. ( ( g ` k ) / ( ( n - k ) + 1 ) ) ) ) ) ) | 
						
							| 36 | 1 | cv |  |-  m | 
						
							| 37 | 36 35 | cfv |  |-  ( wrecs ( < , NN0 , ( g e. _V |-> [_ ( # ` dom g ) / n ]_ ( ( x ^ n ) - sum_ k e. dom g ( ( n _C k ) x. ( ( g ` k ) / ( ( n - k ) + 1 ) ) ) ) ) ) ` m ) | 
						
							| 38 | 1 3 2 4 37 | cmpo |  |-  ( m e. NN0 , x e. CC |-> ( wrecs ( < , NN0 , ( g e. _V |-> [_ ( # ` dom g ) / n ]_ ( ( x ^ n ) - sum_ k e. dom g ( ( n _C k ) x. ( ( g ` k ) / ( ( n - k ) + 1 ) ) ) ) ) ) ` m ) ) | 
						
							| 39 | 0 38 | wceq |  |-  BernPoly = ( m e. NN0 , x e. CC |-> ( wrecs ( < , NN0 , ( g e. _V |-> [_ ( # ` dom g ) / n ]_ ( ( x ^ n ) - sum_ k e. dom g ( ( n _C k ) x. ( ( g ` k ) / ( ( n - k ) + 1 ) ) ) ) ) ) ` m ) ) |