| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cbp | ⊢  BernPoly | 
						
							| 1 |  | vm | ⊢ 𝑚 | 
						
							| 2 |  | cn0 | ⊢ ℕ0 | 
						
							| 3 |  | vx | ⊢ 𝑥 | 
						
							| 4 |  | cc | ⊢ ℂ | 
						
							| 5 |  | clt | ⊢  < | 
						
							| 6 |  | vg | ⊢ 𝑔 | 
						
							| 7 |  | cvv | ⊢ V | 
						
							| 8 |  | chash | ⊢ ♯ | 
						
							| 9 | 6 | cv | ⊢ 𝑔 | 
						
							| 10 | 9 | cdm | ⊢ dom  𝑔 | 
						
							| 11 | 10 8 | cfv | ⊢ ( ♯ ‘ dom  𝑔 ) | 
						
							| 12 |  | vn | ⊢ 𝑛 | 
						
							| 13 | 3 | cv | ⊢ 𝑥 | 
						
							| 14 |  | cexp | ⊢ ↑ | 
						
							| 15 | 12 | cv | ⊢ 𝑛 | 
						
							| 16 | 13 15 14 | co | ⊢ ( 𝑥 ↑ 𝑛 ) | 
						
							| 17 |  | cmin | ⊢  − | 
						
							| 18 |  | vk | ⊢ 𝑘 | 
						
							| 19 |  | cbc | ⊢ C | 
						
							| 20 | 18 | cv | ⊢ 𝑘 | 
						
							| 21 | 15 20 19 | co | ⊢ ( 𝑛 C 𝑘 ) | 
						
							| 22 |  | cmul | ⊢  · | 
						
							| 23 | 20 9 | cfv | ⊢ ( 𝑔 ‘ 𝑘 ) | 
						
							| 24 |  | cdiv | ⊢  / | 
						
							| 25 | 15 20 17 | co | ⊢ ( 𝑛  −  𝑘 ) | 
						
							| 26 |  | caddc | ⊢  + | 
						
							| 27 |  | c1 | ⊢ 1 | 
						
							| 28 | 25 27 26 | co | ⊢ ( ( 𝑛  −  𝑘 )  +  1 ) | 
						
							| 29 | 23 28 24 | co | ⊢ ( ( 𝑔 ‘ 𝑘 )  /  ( ( 𝑛  −  𝑘 )  +  1 ) ) | 
						
							| 30 | 21 29 22 | co | ⊢ ( ( 𝑛 C 𝑘 )  ·  ( ( 𝑔 ‘ 𝑘 )  /  ( ( 𝑛  −  𝑘 )  +  1 ) ) ) | 
						
							| 31 | 10 30 18 | csu | ⊢ Σ 𝑘  ∈  dom  𝑔 ( ( 𝑛 C 𝑘 )  ·  ( ( 𝑔 ‘ 𝑘 )  /  ( ( 𝑛  −  𝑘 )  +  1 ) ) ) | 
						
							| 32 | 16 31 17 | co | ⊢ ( ( 𝑥 ↑ 𝑛 )  −  Σ 𝑘  ∈  dom  𝑔 ( ( 𝑛 C 𝑘 )  ·  ( ( 𝑔 ‘ 𝑘 )  /  ( ( 𝑛  −  𝑘 )  +  1 ) ) ) ) | 
						
							| 33 | 12 11 32 | csb | ⊢ ⦋ ( ♯ ‘ dom  𝑔 )  /  𝑛 ⦌ ( ( 𝑥 ↑ 𝑛 )  −  Σ 𝑘  ∈  dom  𝑔 ( ( 𝑛 C 𝑘 )  ·  ( ( 𝑔 ‘ 𝑘 )  /  ( ( 𝑛  −  𝑘 )  +  1 ) ) ) ) | 
						
							| 34 | 6 7 33 | cmpt | ⊢ ( 𝑔  ∈  V  ↦  ⦋ ( ♯ ‘ dom  𝑔 )  /  𝑛 ⦌ ( ( 𝑥 ↑ 𝑛 )  −  Σ 𝑘  ∈  dom  𝑔 ( ( 𝑛 C 𝑘 )  ·  ( ( 𝑔 ‘ 𝑘 )  /  ( ( 𝑛  −  𝑘 )  +  1 ) ) ) ) ) | 
						
							| 35 | 2 5 34 | cwrecs | ⊢ wrecs (  <  ,  ℕ0 ,  ( 𝑔  ∈  V  ↦  ⦋ ( ♯ ‘ dom  𝑔 )  /  𝑛 ⦌ ( ( 𝑥 ↑ 𝑛 )  −  Σ 𝑘  ∈  dom  𝑔 ( ( 𝑛 C 𝑘 )  ·  ( ( 𝑔 ‘ 𝑘 )  /  ( ( 𝑛  −  𝑘 )  +  1 ) ) ) ) ) ) | 
						
							| 36 | 1 | cv | ⊢ 𝑚 | 
						
							| 37 | 36 35 | cfv | ⊢ ( wrecs (  <  ,  ℕ0 ,  ( 𝑔  ∈  V  ↦  ⦋ ( ♯ ‘ dom  𝑔 )  /  𝑛 ⦌ ( ( 𝑥 ↑ 𝑛 )  −  Σ 𝑘  ∈  dom  𝑔 ( ( 𝑛 C 𝑘 )  ·  ( ( 𝑔 ‘ 𝑘 )  /  ( ( 𝑛  −  𝑘 )  +  1 ) ) ) ) ) ) ‘ 𝑚 ) | 
						
							| 38 | 1 3 2 4 37 | cmpo | ⊢ ( 𝑚  ∈  ℕ0 ,  𝑥  ∈  ℂ  ↦  ( wrecs (  <  ,  ℕ0 ,  ( 𝑔  ∈  V  ↦  ⦋ ( ♯ ‘ dom  𝑔 )  /  𝑛 ⦌ ( ( 𝑥 ↑ 𝑛 )  −  Σ 𝑘  ∈  dom  𝑔 ( ( 𝑛 C 𝑘 )  ·  ( ( 𝑔 ‘ 𝑘 )  /  ( ( 𝑛  −  𝑘 )  +  1 ) ) ) ) ) ) ‘ 𝑚 ) ) | 
						
							| 39 | 0 38 | wceq | ⊢  BernPoly   =  ( 𝑚  ∈  ℕ0 ,  𝑥  ∈  ℂ  ↦  ( wrecs (  <  ,  ℕ0 ,  ( 𝑔  ∈  V  ↦  ⦋ ( ♯ ‘ dom  𝑔 )  /  𝑛 ⦌ ( ( 𝑥 ↑ 𝑛 )  −  Σ 𝑘  ∈  dom  𝑔 ( ( 𝑛 C 𝑘 )  ·  ( ( 𝑔 ‘ 𝑘 )  /  ( ( 𝑛  −  𝑘 )  +  1 ) ) ) ) ) ) ‘ 𝑚 ) ) |