Description: Define the closedneighborhood resp. the class of all neighbors of a vertex (in a graph) and the vertex itself, see definition in section I.1 of Bollobas p. 3. The closed neighborhood of a vertex is the set of all vertices which are connected with this vertex by an edge and the vertex itself (in contrast to an open neighborhood, see df-nbgr ). Alternatively, a closed neighborhood of a vertex could have been defined as its open neighborhood enhanced by the vertex itself, see dfclnbgr4 . This definition is applicable even for arbitrary hypergraphs. (Contributed by AV, 7-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-clnbgr | |- ClNeighbVtx = ( g e. _V , v e. ( Vtx ` g ) |-> ( { v } u. { n e. ( Vtx ` g ) | E. e e. ( Edg ` g ) { v , n } C_ e } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cclnbgr | |- ClNeighbVtx |
|
| 1 | vg | |- g |
|
| 2 | cvv | |- _V |
|
| 3 | vv | |- v |
|
| 4 | cvtx | |- Vtx |
|
| 5 | 1 | cv | |- g |
| 6 | 5 4 | cfv | |- ( Vtx ` g ) |
| 7 | 3 | cv | |- v |
| 8 | 7 | csn | |- { v } |
| 9 | vn | |- n |
|
| 10 | ve | |- e |
|
| 11 | cedg | |- Edg |
|
| 12 | 5 11 | cfv | |- ( Edg ` g ) |
| 13 | 9 | cv | |- n |
| 14 | 7 13 | cpr | |- { v , n } |
| 15 | 10 | cv | |- e |
| 16 | 14 15 | wss | |- { v , n } C_ e |
| 17 | 16 10 12 | wrex | |- E. e e. ( Edg ` g ) { v , n } C_ e |
| 18 | 17 9 6 | crab | |- { n e. ( Vtx ` g ) | E. e e. ( Edg ` g ) { v , n } C_ e } |
| 19 | 8 18 | cun | |- ( { v } u. { n e. ( Vtx ` g ) | E. e e. ( Edg ` g ) { v , n } C_ e } ) |
| 20 | 1 3 2 6 19 | cmpo | |- ( g e. _V , v e. ( Vtx ` g ) |-> ( { v } u. { n e. ( Vtx ` g ) | E. e e. ( Edg ` g ) { v , n } C_ e } ) ) |
| 21 | 0 20 | wceq | |- ClNeighbVtx = ( g e. _V , v e. ( Vtx ` g ) |-> ( { v } u. { n e. ( Vtx ` g ) | E. e e. ( Edg ` g ) { v , n } C_ e } ) ) |