| Step | Hyp | Ref | Expression | 
						
							| 0 |  | ccmet |  |-  CMet | 
						
							| 1 |  | vx |  |-  x | 
						
							| 2 |  | cvv |  |-  _V | 
						
							| 3 |  | vd |  |-  d | 
						
							| 4 |  | cmet |  |-  Met | 
						
							| 5 | 1 | cv |  |-  x | 
						
							| 6 | 5 4 | cfv |  |-  ( Met ` x ) | 
						
							| 7 |  | vf |  |-  f | 
						
							| 8 |  | ccfil |  |-  CauFil | 
						
							| 9 | 3 | cv |  |-  d | 
						
							| 10 | 9 8 | cfv |  |-  ( CauFil ` d ) | 
						
							| 11 |  | cmopn |  |-  MetOpen | 
						
							| 12 | 9 11 | cfv |  |-  ( MetOpen ` d ) | 
						
							| 13 |  | cflim |  |-  fLim | 
						
							| 14 | 7 | cv |  |-  f | 
						
							| 15 | 12 14 13 | co |  |-  ( ( MetOpen ` d ) fLim f ) | 
						
							| 16 |  | c0 |  |-  (/) | 
						
							| 17 | 15 16 | wne |  |-  ( ( MetOpen ` d ) fLim f ) =/= (/) | 
						
							| 18 | 17 7 10 | wral |  |-  A. f e. ( CauFil ` d ) ( ( MetOpen ` d ) fLim f ) =/= (/) | 
						
							| 19 | 18 3 6 | crab |  |-  { d e. ( Met ` x ) | A. f e. ( CauFil ` d ) ( ( MetOpen ` d ) fLim f ) =/= (/) } | 
						
							| 20 | 1 2 19 | cmpt |  |-  ( x e. _V |-> { d e. ( Met ` x ) | A. f e. ( CauFil ` d ) ( ( MetOpen ` d ) fLim f ) =/= (/) } ) | 
						
							| 21 | 0 20 | wceq |  |-  CMet = ( x e. _V |-> { d e. ( Met ` x ) | A. f e. ( CauFil ` d ) ( ( MetOpen ` d ) fLim f ) =/= (/) } ) |