| Step |
Hyp |
Ref |
Expression |
| 0 |
|
ccmtN |
|- cm |
| 1 |
|
vp |
|- p |
| 2 |
|
cvv |
|- _V |
| 3 |
|
vx |
|- x |
| 4 |
|
vy |
|- y |
| 5 |
3
|
cv |
|- x |
| 6 |
|
cbs |
|- Base |
| 7 |
1
|
cv |
|- p |
| 8 |
7 6
|
cfv |
|- ( Base ` p ) |
| 9 |
5 8
|
wcel |
|- x e. ( Base ` p ) |
| 10 |
4
|
cv |
|- y |
| 11 |
10 8
|
wcel |
|- y e. ( Base ` p ) |
| 12 |
|
cmee |
|- meet |
| 13 |
7 12
|
cfv |
|- ( meet ` p ) |
| 14 |
5 10 13
|
co |
|- ( x ( meet ` p ) y ) |
| 15 |
|
cjn |
|- join |
| 16 |
7 15
|
cfv |
|- ( join ` p ) |
| 17 |
|
coc |
|- oc |
| 18 |
7 17
|
cfv |
|- ( oc ` p ) |
| 19 |
10 18
|
cfv |
|- ( ( oc ` p ) ` y ) |
| 20 |
5 19 13
|
co |
|- ( x ( meet ` p ) ( ( oc ` p ) ` y ) ) |
| 21 |
14 20 16
|
co |
|- ( ( x ( meet ` p ) y ) ( join ` p ) ( x ( meet ` p ) ( ( oc ` p ) ` y ) ) ) |
| 22 |
5 21
|
wceq |
|- x = ( ( x ( meet ` p ) y ) ( join ` p ) ( x ( meet ` p ) ( ( oc ` p ) ` y ) ) ) |
| 23 |
9 11 22
|
w3a |
|- ( x e. ( Base ` p ) /\ y e. ( Base ` p ) /\ x = ( ( x ( meet ` p ) y ) ( join ` p ) ( x ( meet ` p ) ( ( oc ` p ) ` y ) ) ) ) |
| 24 |
23 3 4
|
copab |
|- { <. x , y >. | ( x e. ( Base ` p ) /\ y e. ( Base ` p ) /\ x = ( ( x ( meet ` p ) y ) ( join ` p ) ( x ( meet ` p ) ( ( oc ` p ) ` y ) ) ) ) } |
| 25 |
1 2 24
|
cmpt |
|- ( p e. _V |-> { <. x , y >. | ( x e. ( Base ` p ) /\ y e. ( Base ` p ) /\ x = ( ( x ( meet ` p ) y ) ( join ` p ) ( x ( meet ` p ) ( ( oc ` p ) ` y ) ) ) ) } ) |
| 26 |
0 25
|
wceq |
|- cm = ( p e. _V |-> { <. x , y >. | ( x e. ( Base ` p ) /\ y e. ( Base ` p ) /\ x = ( ( x ( meet ` p ) y ) ( join ` p ) ( x ( meet ` p ) ( ( oc ` p ) ` y ) ) ) ) } ) |