| Step |
Hyp |
Ref |
Expression |
| 0 |
|
ccmtN |
⊢ cm |
| 1 |
|
vp |
⊢ 𝑝 |
| 2 |
|
cvv |
⊢ V |
| 3 |
|
vx |
⊢ 𝑥 |
| 4 |
|
vy |
⊢ 𝑦 |
| 5 |
3
|
cv |
⊢ 𝑥 |
| 6 |
|
cbs |
⊢ Base |
| 7 |
1
|
cv |
⊢ 𝑝 |
| 8 |
7 6
|
cfv |
⊢ ( Base ‘ 𝑝 ) |
| 9 |
5 8
|
wcel |
⊢ 𝑥 ∈ ( Base ‘ 𝑝 ) |
| 10 |
4
|
cv |
⊢ 𝑦 |
| 11 |
10 8
|
wcel |
⊢ 𝑦 ∈ ( Base ‘ 𝑝 ) |
| 12 |
|
cmee |
⊢ meet |
| 13 |
7 12
|
cfv |
⊢ ( meet ‘ 𝑝 ) |
| 14 |
5 10 13
|
co |
⊢ ( 𝑥 ( meet ‘ 𝑝 ) 𝑦 ) |
| 15 |
|
cjn |
⊢ join |
| 16 |
7 15
|
cfv |
⊢ ( join ‘ 𝑝 ) |
| 17 |
|
coc |
⊢ oc |
| 18 |
7 17
|
cfv |
⊢ ( oc ‘ 𝑝 ) |
| 19 |
10 18
|
cfv |
⊢ ( ( oc ‘ 𝑝 ) ‘ 𝑦 ) |
| 20 |
5 19 13
|
co |
⊢ ( 𝑥 ( meet ‘ 𝑝 ) ( ( oc ‘ 𝑝 ) ‘ 𝑦 ) ) |
| 21 |
14 20 16
|
co |
⊢ ( ( 𝑥 ( meet ‘ 𝑝 ) 𝑦 ) ( join ‘ 𝑝 ) ( 𝑥 ( meet ‘ 𝑝 ) ( ( oc ‘ 𝑝 ) ‘ 𝑦 ) ) ) |
| 22 |
5 21
|
wceq |
⊢ 𝑥 = ( ( 𝑥 ( meet ‘ 𝑝 ) 𝑦 ) ( join ‘ 𝑝 ) ( 𝑥 ( meet ‘ 𝑝 ) ( ( oc ‘ 𝑝 ) ‘ 𝑦 ) ) ) |
| 23 |
9 11 22
|
w3a |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑝 ) ∧ 𝑦 ∈ ( Base ‘ 𝑝 ) ∧ 𝑥 = ( ( 𝑥 ( meet ‘ 𝑝 ) 𝑦 ) ( join ‘ 𝑝 ) ( 𝑥 ( meet ‘ 𝑝 ) ( ( oc ‘ 𝑝 ) ‘ 𝑦 ) ) ) ) |
| 24 |
23 3 4
|
copab |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( Base ‘ 𝑝 ) ∧ 𝑦 ∈ ( Base ‘ 𝑝 ) ∧ 𝑥 = ( ( 𝑥 ( meet ‘ 𝑝 ) 𝑦 ) ( join ‘ 𝑝 ) ( 𝑥 ( meet ‘ 𝑝 ) ( ( oc ‘ 𝑝 ) ‘ 𝑦 ) ) ) ) } |
| 25 |
1 2 24
|
cmpt |
⊢ ( 𝑝 ∈ V ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( Base ‘ 𝑝 ) ∧ 𝑦 ∈ ( Base ‘ 𝑝 ) ∧ 𝑥 = ( ( 𝑥 ( meet ‘ 𝑝 ) 𝑦 ) ( join ‘ 𝑝 ) ( 𝑥 ( meet ‘ 𝑝 ) ( ( oc ‘ 𝑝 ) ‘ 𝑦 ) ) ) ) } ) |
| 26 |
0 25
|
wceq |
⊢ cm = ( 𝑝 ∈ V ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( Base ‘ 𝑝 ) ∧ 𝑦 ∈ ( Base ‘ 𝑝 ) ∧ 𝑥 = ( ( 𝑥 ( meet ‘ 𝑝 ) 𝑦 ) ( join ‘ 𝑝 ) ( 𝑥 ( meet ‘ 𝑝 ) ( ( oc ‘ 𝑝 ) ‘ 𝑦 ) ) ) ) } ) |