Metamath Proof Explorer


Definition df-coll

Description: Define the collection operation. This is similar to the image set operation " , but it uses Scott's trick to ensure the output is always a set. (Contributed by Rohan Ridenour, 11-Aug-2023)

Ref Expression
Assertion df-coll
|- ( F Coll A ) = U_ x e. A Scott ( F " { x } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cF
 |-  F
1 cA
 |-  A
2 1 0 ccoll
 |-  ( F Coll A )
3 vx
 |-  x
4 3 cv
 |-  x
5 4 csn
 |-  { x }
6 0 5 cima
 |-  ( F " { x } )
7 6 cscott
 |-  Scott ( F " { x } )
8 3 1 7 ciun
 |-  U_ x e. A Scott ( F " { x } )
9 2 8 wceq
 |-  ( F Coll A ) = U_ x e. A Scott ( F " { x } )