Metamath Proof Explorer


Theorem dfcoll2

Description: Alternate definition of the collection operation. (Contributed by Rohan Ridenour, 11-Aug-2023)

Ref Expression
Assertion dfcoll2
|- ( F Coll A ) = U_ x e. A Scott { y | x F y }

Proof

Step Hyp Ref Expression
1 df-coll
 |-  ( F Coll A ) = U_ x e. A Scott ( F " { x } )
2 imasng
 |-  ( x e. A -> ( F " { x } ) = { y | x F y } )
3 2 scotteqd
 |-  ( x e. A -> Scott ( F " { x } ) = Scott { y | x F y } )
4 3 iuneq2i
 |-  U_ x e. A Scott ( F " { x } ) = U_ x e. A Scott { y | x F y }
5 1 4 eqtri
 |-  ( F Coll A ) = U_ x e. A Scott { y | x F y }