Metamath Proof Explorer


Theorem colleq12d

Description: Equality theorem for the collection operation. (Contributed by Rohan Ridenour, 11-Aug-2023)

Ref Expression
Hypotheses colleq12d.1
|- ( ph -> F = G )
colleq12d.2
|- ( ph -> A = B )
Assertion colleq12d
|- ( ph -> ( F Coll A ) = ( G Coll B ) )

Proof

Step Hyp Ref Expression
1 colleq12d.1
 |-  ( ph -> F = G )
2 colleq12d.2
 |-  ( ph -> A = B )
3 1 imaeq1d
 |-  ( ph -> ( F " { x } ) = ( G " { x } ) )
4 3 scotteqd
 |-  ( ph -> Scott ( F " { x } ) = Scott ( G " { x } ) )
5 2 4 iuneq12d
 |-  ( ph -> U_ x e. A Scott ( F " { x } ) = U_ x e. B Scott ( G " { x } ) )
6 df-coll
 |-  ( F Coll A ) = U_ x e. A Scott ( F " { x } )
7 df-coll
 |-  ( G Coll B ) = U_ x e. B Scott ( G " { x } )
8 5 6 7 3eqtr4g
 |-  ( ph -> ( F Coll A ) = ( G Coll B ) )