Description: Equality theorem for the collection operation. (Contributed by Rohan Ridenour, 11-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | colleq12d.1 | |- ( ph -> F = G ) |
|
| colleq12d.2 | |- ( ph -> A = B ) |
||
| Assertion | colleq12d | |- ( ph -> ( F Coll A ) = ( G Coll B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | colleq12d.1 | |- ( ph -> F = G ) |
|
| 2 | colleq12d.2 | |- ( ph -> A = B ) |
|
| 3 | 1 | imaeq1d | |- ( ph -> ( F " { x } ) = ( G " { x } ) ) |
| 4 | 3 | scotteqd | |- ( ph -> Scott ( F " { x } ) = Scott ( G " { x } ) ) |
| 5 | 2 4 | iuneq12d | |- ( ph -> U_ x e. A Scott ( F " { x } ) = U_ x e. B Scott ( G " { x } ) ) |
| 6 | df-coll | |- ( F Coll A ) = U_ x e. A Scott ( F " { x } ) |
|
| 7 | df-coll | |- ( G Coll B ) = U_ x e. B Scott ( G " { x } ) |
|
| 8 | 5 6 7 | 3eqtr4g | |- ( ph -> ( F Coll A ) = ( G Coll B ) ) |