Metamath Proof Explorer


Theorem colleq12d

Description: Equality theorem for the collection operation. (Contributed by Rohan Ridenour, 11-Aug-2023)

Ref Expression
Hypotheses colleq12d.1 φ F = G
colleq12d.2 φ A = B
Assertion colleq12d φ F Coll A = G Coll B

Proof

Step Hyp Ref Expression
1 colleq12d.1 φ F = G
2 colleq12d.2 φ A = B
3 1 imaeq1d φ F x = G x
4 3 scotteqd φ Scott F x = Scott G x
5 2 4 iuneq12d φ x A Scott F x = x B Scott G x
6 df-coll F Coll A = x A Scott F x
7 df-coll G Coll B = x B Scott G x
8 5 6 7 3eqtr4g φ F Coll A = G Coll B