Metamath Proof Explorer


Theorem dfcoll2

Description: Alternate definition of the collection operation. (Contributed by Rohan Ridenour, 11-Aug-2023)

Ref Expression
Assertion dfcoll2 ( 𝐹 Coll 𝐴 ) = 𝑥𝐴 Scott { 𝑦𝑥 𝐹 𝑦 }

Proof

Step Hyp Ref Expression
1 df-coll ( 𝐹 Coll 𝐴 ) = 𝑥𝐴 Scott ( 𝐹 “ { 𝑥 } )
2 imasng ( 𝑥𝐴 → ( 𝐹 “ { 𝑥 } ) = { 𝑦𝑥 𝐹 𝑦 } )
3 2 scotteqd ( 𝑥𝐴 → Scott ( 𝐹 “ { 𝑥 } ) = Scott { 𝑦𝑥 𝐹 𝑦 } )
4 3 iuneq2i 𝑥𝐴 Scott ( 𝐹 “ { 𝑥 } ) = 𝑥𝐴 Scott { 𝑦𝑥 𝐹 𝑦 }
5 1 4 eqtri ( 𝐹 Coll 𝐴 ) = 𝑥𝐴 Scott { 𝑦𝑥 𝐹 𝑦 }