Description: Alternate definition of the collection operation. (Contributed by Rohan Ridenour, 11-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | dfcoll2 | ⊢ ( 𝐹 Coll 𝐴 ) = ∪ 𝑥 ∈ 𝐴 Scott { 𝑦 ∣ 𝑥 𝐹 𝑦 } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-coll | ⊢ ( 𝐹 Coll 𝐴 ) = ∪ 𝑥 ∈ 𝐴 Scott ( 𝐹 “ { 𝑥 } ) | |
2 | imasng | ⊢ ( 𝑥 ∈ 𝐴 → ( 𝐹 “ { 𝑥 } ) = { 𝑦 ∣ 𝑥 𝐹 𝑦 } ) | |
3 | 2 | scotteqd | ⊢ ( 𝑥 ∈ 𝐴 → Scott ( 𝐹 “ { 𝑥 } ) = Scott { 𝑦 ∣ 𝑥 𝐹 𝑦 } ) |
4 | 3 | iuneq2i | ⊢ ∪ 𝑥 ∈ 𝐴 Scott ( 𝐹 “ { 𝑥 } ) = ∪ 𝑥 ∈ 𝐴 Scott { 𝑦 ∣ 𝑥 𝐹 𝑦 } |
5 | 1 4 | eqtri | ⊢ ( 𝐹 Coll 𝐴 ) = ∪ 𝑥 ∈ 𝐴 Scott { 𝑦 ∣ 𝑥 𝐹 𝑦 } |