Step |
Hyp |
Ref |
Expression |
1 |
|
scotteqd.1 |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
2 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐴 = 𝐵 ) |
3 |
2
|
raleqdv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ 𝐵 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) |
4 |
1 3
|
rabeqbidva |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } = { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } ) |
5 |
|
df-scott |
⊢ Scott 𝐴 = { 𝑥 ∈ 𝐴 ∣ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } |
6 |
|
df-scott |
⊢ Scott 𝐵 = { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } |
7 |
4 5 6
|
3eqtr4g |
⊢ ( 𝜑 → Scott 𝐴 = Scott 𝐵 ) |