Description: Define the Scott operation. This operation constructs a subset of the input class which is nonempty whenever its input is using Scott's trick. (Contributed by Rohan Ridenour, 9-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-scott | ⊢ Scott 𝐴 = { 𝑥 ∈ 𝐴 ∣ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cA | ⊢ 𝐴 | |
| 1 | 0 | cscott | ⊢ Scott 𝐴 |
| 2 | vx | ⊢ 𝑥 | |
| 3 | vy | ⊢ 𝑦 | |
| 4 | crnk | ⊢ rank | |
| 5 | 2 | cv | ⊢ 𝑥 |
| 6 | 5 4 | cfv | ⊢ ( rank ‘ 𝑥 ) |
| 7 | 3 | cv | ⊢ 𝑦 |
| 8 | 7 4 | cfv | ⊢ ( rank ‘ 𝑦 ) |
| 9 | 6 8 | wss | ⊢ ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) |
| 10 | 9 3 0 | wral | ⊢ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) |
| 11 | 10 2 0 | crab | ⊢ { 𝑥 ∈ 𝐴 ∣ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } |
| 12 | 1 11 | wceq | ⊢ Scott 𝐴 = { 𝑥 ∈ 𝐴 ∣ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } |