Metamath Proof Explorer


Definition df-scott

Description: Define the Scott operation. This operation constructs a subset of the input class which is nonempty whenever its input is using Scott's trick. (Contributed by Rohan Ridenour, 9-Aug-2023)

Ref Expression
Assertion df-scott Scott A = x A | y A rank x rank y

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA class A
1 0 cscott class Scott A
2 vx setvar x
3 vy setvar y
4 crnk class rank
5 2 cv setvar x
6 5 4 cfv class rank x
7 3 cv setvar y
8 7 4 cfv class rank y
9 6 8 wss wff rank x rank y
10 9 3 0 wral wff y A rank x rank y
11 10 2 0 crab class x A | y A rank x rank y
12 1 11 wceq wff Scott A = x A | y A rank x rank y