Description: Define the Scott operation. This operation constructs a subset of the input class which is nonempty whenever its input is using Scott's trick. (Contributed by Rohan Ridenour, 9-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-scott | |- Scott A = { x e. A | A. y e. A ( rank ` x ) C_ ( rank ` y ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cA | |- A |
|
| 1 | 0 | cscott | |- Scott A |
| 2 | vx | |- x |
|
| 3 | vy | |- y |
|
| 4 | crnk | |- rank |
|
| 5 | 2 | cv | |- x |
| 6 | 5 4 | cfv | |- ( rank ` x ) |
| 7 | 3 | cv | |- y |
| 8 | 7 4 | cfv | |- ( rank ` y ) |
| 9 | 6 8 | wss | |- ( rank ` x ) C_ ( rank ` y ) |
| 10 | 9 3 0 | wral | |- A. y e. A ( rank ` x ) C_ ( rank ` y ) |
| 11 | 10 2 0 | crab | |- { x e. A | A. y e. A ( rank ` x ) C_ ( rank ` y ) } |
| 12 | 1 11 | wceq | |- Scott A = { x e. A | A. y e. A ( rank ` x ) C_ ( rank ` y ) } |