Metamath Proof Explorer


Definition df-scott

Description: Define the Scott operation. This operation constructs a subset of the input class which is nonempty whenever its input is using Scott's trick. (Contributed by Rohan Ridenour, 9-Aug-2023)

Ref Expression
Assertion df-scott
|- Scott A = { x e. A | A. y e. A ( rank ` x ) C_ ( rank ` y ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA
 |-  A
1 0 cscott
 |-  Scott A
2 vx
 |-  x
3 vy
 |-  y
4 crnk
 |-  rank
5 2 cv
 |-  x
6 5 4 cfv
 |-  ( rank ` x )
7 3 cv
 |-  y
8 7 4 cfv
 |-  ( rank ` y )
9 6 8 wss
 |-  ( rank ` x ) C_ ( rank ` y )
10 9 3 0 wral
 |-  A. y e. A ( rank ` x ) C_ ( rank ` y )
11 10 2 0 crab
 |-  { x e. A | A. y e. A ( rank ` x ) C_ ( rank ` y ) }
12 1 11 wceq
 |-  Scott A = { x e. A | A. y e. A ( rank ` x ) C_ ( rank ` y ) }