Description: Define the class of comember equivalence relations on their domain quotients. (Contributed by Peter Mazsa, 28-Nov-2022) (Revised by Peter Mazsa, 24-Jul-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-comembers | |- CoMembErs = { a | ,~ ( `' _E |` a ) Ers a } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ccomembers | |- CoMembErs |
|
| 1 | va | |- a |
|
| 2 | cep | |- _E |
|
| 3 | 2 | ccnv | |- `' _E |
| 4 | 1 | cv | |- a |
| 5 | 3 4 | cres | |- ( `' _E |` a ) |
| 6 | 5 | ccoss | |- ,~ ( `' _E |` a ) |
| 7 | cers | |- Ers |
|
| 8 | 6 4 7 | wbr | |- ,~ ( `' _E |` a ) Ers a |
| 9 | 8 1 | cab | |- { a | ,~ ( `' _E |` a ) Ers a } |
| 10 | 0 9 | wceq | |- CoMembErs = { a | ,~ ( `' _E |` a ) Ers a } |