| Step |
Hyp |
Ref |
Expression |
| 0 |
|
clc |
|- CvLat |
| 1 |
|
vk |
|- k |
| 2 |
|
cal |
|- AtLat |
| 3 |
|
va |
|- a |
| 4 |
|
catm |
|- Atoms |
| 5 |
1
|
cv |
|- k |
| 6 |
5 4
|
cfv |
|- ( Atoms ` k ) |
| 7 |
|
vb |
|- b |
| 8 |
|
vc |
|- c |
| 9 |
|
cbs |
|- Base |
| 10 |
5 9
|
cfv |
|- ( Base ` k ) |
| 11 |
3
|
cv |
|- a |
| 12 |
|
cple |
|- le |
| 13 |
5 12
|
cfv |
|- ( le ` k ) |
| 14 |
8
|
cv |
|- c |
| 15 |
11 14 13
|
wbr |
|- a ( le ` k ) c |
| 16 |
15
|
wn |
|- -. a ( le ` k ) c |
| 17 |
|
cjn |
|- join |
| 18 |
5 17
|
cfv |
|- ( join ` k ) |
| 19 |
7
|
cv |
|- b |
| 20 |
14 19 18
|
co |
|- ( c ( join ` k ) b ) |
| 21 |
11 20 13
|
wbr |
|- a ( le ` k ) ( c ( join ` k ) b ) |
| 22 |
16 21
|
wa |
|- ( -. a ( le ` k ) c /\ a ( le ` k ) ( c ( join ` k ) b ) ) |
| 23 |
14 11 18
|
co |
|- ( c ( join ` k ) a ) |
| 24 |
19 23 13
|
wbr |
|- b ( le ` k ) ( c ( join ` k ) a ) |
| 25 |
22 24
|
wi |
|- ( ( -. a ( le ` k ) c /\ a ( le ` k ) ( c ( join ` k ) b ) ) -> b ( le ` k ) ( c ( join ` k ) a ) ) |
| 26 |
25 8 10
|
wral |
|- A. c e. ( Base ` k ) ( ( -. a ( le ` k ) c /\ a ( le ` k ) ( c ( join ` k ) b ) ) -> b ( le ` k ) ( c ( join ` k ) a ) ) |
| 27 |
26 7 6
|
wral |
|- A. b e. ( Atoms ` k ) A. c e. ( Base ` k ) ( ( -. a ( le ` k ) c /\ a ( le ` k ) ( c ( join ` k ) b ) ) -> b ( le ` k ) ( c ( join ` k ) a ) ) |
| 28 |
27 3 6
|
wral |
|- A. a e. ( Atoms ` k ) A. b e. ( Atoms ` k ) A. c e. ( Base ` k ) ( ( -. a ( le ` k ) c /\ a ( le ` k ) ( c ( join ` k ) b ) ) -> b ( le ` k ) ( c ( join ` k ) a ) ) |
| 29 |
28 1 2
|
crab |
|- { k e. AtLat | A. a e. ( Atoms ` k ) A. b e. ( Atoms ` k ) A. c e. ( Base ` k ) ( ( -. a ( le ` k ) c /\ a ( le ` k ) ( c ( join ` k ) b ) ) -> b ( le ` k ) ( c ( join ` k ) a ) ) } |
| 30 |
0 29
|
wceq |
|- CvLat = { k e. AtLat | A. a e. ( Atoms ` k ) A. b e. ( Atoms ` k ) A. c e. ( Base ` k ) ( ( -. a ( le ` k ) c /\ a ( le ` k ) ( c ( join ` k ) b ) ) -> b ( le ` k ) ( c ( join ` k ) a ) ) } |